Limonnitsa: making Limonnik-3 post-quantum
(with isogenies)

Sergey Grebnev

TC 26

OCTCRYPT

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 1/24

Classic Diffie-Hellman

Diffie-Hellman-Merkle, 1976

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 2/24

Limonnik-3

Introduced in 2014, officially ac-
cepted in 2017.

@ Built upon MTI/A0, KEA+C
ideas.

@ Two ephemeral-to-static DH.

@ Uses (optionally) two distinct
elliptic curves.
@ UKS- and KCl-secure.

@ Security argument by reduction
to GDHP.

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 3/24

Limonnik-3
A: ka €r 1,98 — 1]
A—B Ida,Certa,kaPs
B: ks €r [1,ga — 1],Q = caksSa, R = CgSkaPs

K || M = kdf(r(Q),n(R), Ida || Ids[|| Of)
tagsg = maCM(hQ, kBPA, kAPB, IdB7 IdA)
B— A Idg,Certg,ksgPa,tags
A: Q = CASAkBPA, R = cgkaSg
K || M = kdf(n(Q),n(R), Ida || Idg[|| Of)
If tagg # macy(hz, kgPa, kaPg, Idg, Ida),
terminates the session with an error
taga = maCM(hg, kAPB, kBPA, IdA7 IdB)
A—B taga
B: If tagA 7& macM(hg, kAPB7 kBPA, IdA, IdB),
terminates the session with an error

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 4/24

Limonnik-3 and quantum threat

Limonnik-3 is not quantum-secure.

Classical security: O(1/min(qga, gg) by Pollard’s p.
Quantum security: O(In? min(ga, gg)) by Schor’s method.

Can we replace the basic Diffie-Hellman key exchange by a post-
quantum primitive?

Consider Supersingular Isogeny Diffie-Hellman (L. De Feo, D. Jao,
J. PlGt, 2011-2014).

E/(Q) —— E/(P,Q)

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 5/24

N
SIDH

Public parameters: p = A2 - f £ 1, Ia,lg — distinct small primes,
(Ia,f) = (Ig,f) = 1, a supersingular elliptic curve Ey(GF(p?)) and
bases {Pa,Qa} 1 {Pg, Qg}, generating, resp., Eo[l3*] and Eo[/f?], that
is, (Pa, Qa) = Eollz'] and (Pg, Q) = Eo[lz’].

A chooses na €g Z/I;/Z, constructs o, : Eg — Ea with the kernel Ku :=
(Pa+ [nalQa). A also computes Bbluncnset obpas {pa(Ps), va(QB)}
and sends them to B together with E4.

Having received from B the tuple Eg, v5(Psg), v8(Qg), A constructs ¢, :
Eg — Eag with the kernel <Q0B(PA) + [I'IA](,DB(QA)>.

B proceeds simultaneously. The secret key is the j-invariant of

Eas = ¢'B(pa(Eo)) = wa(vs(Eo)) = Eo/ (Pa + [na]Qa, Ps + [ns]QB) -

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 6/24

Introducing Limonnitsa

A post-quantum version of

b !TE Limonnik-3.

@ Built upon Limonnik-3 struc-

[]

L]

L]

L]

: PR RAN ST :

: ooy \'\\ 1 s ture.

: wny ¢ @ Two ephemeral-to-static SIDH.
: N ¢ © Uses (optionally) two distinct
E s = E parameters sets.

. ; ” ¢ @ UKS- and KCl-secure.

. b .

E Lo E @ Security argument by weaker

reduction to SSDHP.

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 7124

Limonnitsa

Fix public parameters for the parties A and B.
o Pa = 2€a23€as _ 1,
® Eno(GF(p%));

@ linearly independent points Pas, Qas € Eao[2%2] (that is, | (Pa2, Qa2) | =
229a2)

For the party B, we have:
@ pg= 26p23€b3 _
® Epo(GF(p3));

@ linearly independent points Pgs, Qg2 € Ego[2°2] (that is, | (P2, Qg2) | =
229b2)

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 8/24

]
Limonnitsa

Now, the party A selects its secret static key as an integer s, such that 0 <
Sa < 2% constructs the isogeny wa : Ea — Ea/ (Pa2 + [Sa]Qaz2), calculates
Ea = Eao/ (Pa2 + [Sa]Qaz2), Pa = ¢a(Pas), @a = ¢a(Qas), sets its static public
key to {Ea, Pa,Qa}, and acquires a certificate Certa.

B selects its static key as an integer sg such that 0 < sg < 22, constructs the
isogeny g : Eg — Eg/ (Pg2 + [SB]Qs2), calculates Eg = Egg/ (Pg2 + [Sg]Qs2),
Pg = v5(Ps3), @s = ¢5(Qs3), sets is static public key as {Eg, Pg, Qs}, and
acquires a certificate Certg as well.

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 9/24

Limonnitsa

A: ka €r [1,3%3], Sag = Pg3 + [Ka]QBs,
was : Eg — EB/ <SAB> —an isogeny with the kernel <SAB>
Eag = Epo/ (Sasg) (that is, Eag = wag(Ego))
Ka = {EL, 0a8(Pg2), pas(Qs2)} — A’'s ephemeral public key

A—B IdA,CertA,ICA

B: ke €r [1,3%3],Sga = Pas + [Kg]Qas,
vBa : Ea — Ep/ (Sga) — an isogeny with the kernel (Sga)
Ega = Eao/ (Sga) (that is, Ega = wga(Eao))
Ke = {Eg, va(Pa2), v8a(Qa2)} — B’s session public key
Tag = Pa + [kg]Qa
Tas = vas(Ps2) + [SB]was(QB2)
Yag : E) — E,/ (Tag) — an isogeny with the kernel (Tsg)
Yag 1 EB = Eg/ (Thg) — an isogeny with the kernel (Tg)
Eas = ¢AB(E,’4_); Els :_1/1,'43(55)
K || M= kdf(j(Eag) || J(Eag) || Ida || Idg[[| OF])
tagB = maCM(hg, ’CB,]CA, IdB, IdA)

B— A IdB,CertB,ICB,tagB

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019

10/24

Limonnitsa

A: Tea = vBa(Pa2) + [Salesa(Qa2)
Tga = Ps + [ka]QB
Vha : Ep — Ep/ (Tea) — an isogeny with the kernel (Tga)
¥ea : Ea — Ea/ (Tg,) — an isogeny with the kernel (Tg,)
E;BA = wI/BA(E.{B);EBA = w,/L\B(EA)
K[| M = kdf(j(Ega) || j(Esa) || Ida || Idg]|| Of))
If tagB 75 macM(hg,]CB, ’CA, IdB, IdA),
terminates the session with an error
tagA = maCM(h3a ICA)]CBa IdAv IdB)
A—B taga
B: If taga 75 macM(hg,ICA,ICB,IdA,IdB),
terminates the session with an error

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 11/24

Security properties

Secret key recovery: /p quantum and ,/p classical.
Parties’ authentication: PKI.

UKS-attacks: by tags structure similar to Limonnik-3.
KCl-ataku: immune by the basic design of MTI/AQ.
Forward secrecy: for A, B, but not for A and B.
Parameters: 902-bit prime, to keep up with Kuznyechik.

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 12/24

|
Security reductions

Problem 1.

Computational isogeny Diffie-Hellman, SSCDH: let o5 : Ey — Eap — an
isogeny with kernel (Pa + [nalQa), and pg : Ey — Ep — an isogeny
with kernel (Pg + [ng]Qg), where np is chosen uniformly randomly from
ZJI3*7 and ng is chosen uniformly randomly from Z /I 7. Given E, Eg
and the images ¢a(Pg), va(QB), v8(Pa), v8(Qa), find the j-invariant of
the curve Ey/ (Pa + [na]Qa, Ps + [ng]Qs).

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 13/24

Security reductions

Problem 2.

Decisional isogeny Diffie-Hellman, SSDDH: Given a tuple sampled with
probability 1/2 from one of the following two distributions
@ (Ea,EB,¢a(PB), va(QB), vB(Pa), v8(Qa), Eas), Where
(Ea,Eg,¢a(PB), pa(QB), v8(Pa), v8(Qa) — as before, Eap =
Eo/ (Pa + Qa,[m|Pg + [n]Qs) ;
@ (Ea,EB, va(PB), »a(QB), 8(Pa), v8(Qa), Ec), where
), ¢B
[

(Ea,EB, pa(PB), va(QB (Pa), vB(Q) — as before, and Ec =
Eo/ (Pa+ [n']Qa,Ps + [n']QB) where m’,n" are chosen at random

from from Z/I227);
determine from which distribution the tuple is sampled.

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 14/24

Security reductions |l

We state now a weaker version of the security definition. We allow an
adversary M to perform any of the following queries.

@ Initiate a session between any chosen parties.

@ Send messages from a party to another, which is followed by a
correct (prescribed by the protocol) response.

@ Execute a correct session between any chosen parties.

@ Corrupt a party (that is, to learn any secret keys, as well as all gen-
erated shared keys and any local state information).

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 15/24

Security reductions |l

Note that M cannot perform any Reveal queries.

Define as A(n) the set of all Limonnitsa public parameters for a chosen
security parameter n: that is, all primes of an appropriate form with bit-
lentgh n, all possible supersingular elliptic curves defined over those
primes.

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 16/24

Security reductions |l

Definition 3.

A key agreement protocol is said to be weak-AKE-secure if the following
conditions hold:

@ If two honest parties complete matching sessions then, except with
negligible probability, they both compute the same session key.

@ No polynomially bounded adversary M defined above can distin-
guish the session key of a fresh session from a randomly chosen
session key with probability greater than 1/2 plus a negligible frac-
tion.

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 17/24

|
Security reductions Il

Theorem 4.

Let the SSDDH problem for A be computationally hard. Let kdf be mod-
elled by a pseudorandom function, let mac be secure against forgery
attack. Then Limonnitsa is secure in the sense of Definition 3.

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 18/24

Security reductions Il

Proof (sketch).

The proof repeats the analogous results for Limonnik-3 (Grebnev, 2014-
2019) in a weaker security model.

@ We introduce L-2, a reduced version of Limonnitsa, by removing
authentication tags and replacing kdf by a hash function.

@ We consider the only possibility for an adversary to break L-2: that
is, to solve the SSCDH.

@ We show that there exists a polynomial-time algortith with success
probability

%{Pr[Success(M)])
where Pr[Success(,M)] is the probability that M breaks weak AKE-
secutity of L-2.
@ We use then the UC-property to show that Limonnitsa is secure.

[]
Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 19/24

Attacks against static keys

The security model does not cover adaptive attacks by Galbraith, Petit,
Shani, and Ti.

Suppose B has a static public key Eg = E/ (Pg + [5]Qg). Let px be A’s
isogeny, R = ox(Ps), S = vx(Qg). Suppose A knows K;, 0 < K; < I,
such that 3 = K; + l,z, let zy be guess for z (mod ;). The attack is to
choose R' = R+ [T 17'K; — 7 1z5]S and S’ = [1+/7~"~1]S and send
{Ex,R',S'} to B.

B computes

R+[BS=-=(R+I[B]S) +[z~205"]S,

the resulting kernel is correct iff z = zp (mod /o).
After (I, — 1)es sessions, the secret key is recovered.

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 20/24

Public key validation

We use Kirkwood's trick to counter this attack.

Instead of choosing random ephemeral secret key ka, the party A
chooses a single random seed rp, € V* and uses a pseudo-random
function prf to output ks = prf(ra). Then, tags is calculated as
taga = encrypty,(hs,ra,Ka,Kg, Ida, Idg). The party B, having calcu-
lated the session key, recovers the seed r, and repeats A’'s computa-
tions in order to verify that the keys were constructed as prescribed,
otherwise, terminates the session. The parties B and A proceed vice
versa.

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 21/24

Limonnitsa++

A:

A—B

B— A

Ca €r V*,ka = H(Sa), Sag = Ps3 + [ka]Qss,

was : Eg — EB/ <SAB> —an isogeny with the kernel <SAB>
Eag = Epo/ (Sasg) (that is, Eag = was(Ego))

Ka = {EL, 0a8(Pg2), pas(Qs2)} — A’'s ephemeral public key
IdA, CertA,lCA

Sg €r V*[1,3%3], kg = H(Sg), Sga = Pa3 + [kg]Qas,

vpa : Ea — Eg/ (Sga) — an isogeny with the kernel (Sga)
Ega = Eao/ (Sga) (that is, Ega = wga(Eao))

Ke = {Eg, va(Pa2), v8a(Qa2)} — B’s session public key
Tag = Pa + [kg]Qa

Tas = vas(Ps2) + [SB]was(QB2)

Yag : E) — E,/ (Tag) — an isogeny with the kernel (Tsg)
Yag 1 EB = Eg/ (Thg) — an isogeny with the kernel (Tg)
Exp = ¢AB(E,/4_)§ Eng :_1/’,/43(’58)

K || M= kdf(j(Eag) || /(Eag) || Ida || Idg[|| OF])

tags = encrypt,,(hs,cg,Kg, Ka, Idg, Ida)

IdB, Certg, K:B, tags

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019

22/24

Limonnitsa

A—B

Tea = ¢Ba(Pa2) + [SaleBa(Qa2)

Tga = Ps + [ka]Qs

Yga t Eg — Eg/ (Tga) — an isogeny with the kernel (Tga)
Yea : Ea — Ea/ (Tg,) — an isogeny with the kernel (Tg,)
Ega = Vpa(Ep); Epa = Vpg(Ea)

KM =kdf((Ep,) |l j(Eea) | Tda || Tdg[] ON)

decrypts cg, kg = H(cg), computes g,

— an isogeny with the kernel Pas + [kg]Qas,

if A (Pa2) # ©Ba(Pa2) Or wps(Qa2) # vea(Qa2),

sets K | M = kdf(j(Ep,) || n'|| Ida || Ids[|| ON).n €r [1.p3]
taga = encrypt,,(hs,ca, Ka, Kg, Ida, Idg)

taga

decrypts ca,ka = H(ca), computes ©'AB

— an isogeny with the kernel Pgs + [k5]Qsgs3,

if wpa(Pa2) # ©Ba(Pa2) OF ppa(Qa2) # ¢ea(Qa2),

sets K | M = kdf(n || j(Esg) || Ida || Ids[|| ON).n €r [1.p3]

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019

23/24

I
Thank you

Thanks for your attention.

grebnev_sv@tc26.ru

Sergey Grebnev (TC 26) Limonnitsa June 4, 2019 24124

