Limonnitsa: making Limonnik-3 post-quantum (with isogenies)

Sergey Grebnev

TC 26

Classic Diffie-Hellman

Diffie-Hellman-Merkle, 1976

$$x, A = g^{x}$$
 \xrightarrow{A} \xrightarrow{B} $y, B = g^{y}$ $B^{x} = g^{xy} = A^{y}$

Limonnik-3

Introduced in 2014, officially accepted in 2017.

- Built upon MTI/A0, KEA+C ideas.
- Two ephemeral-to-static DH.
- Uses (optionally) two distinct elliptic curves.
- UKS- and KCI-secure.
- Security argument by reduction to GDHP.

Limonnik-3

```
\begin{array}{lll} A: & k_A \in_R [1, q_B - 1] \\ A \to B & \mathrm{Id}_A, \mathrm{Cert}_A, k_A P_B \\ B: & k_B \in_R [1, q_A - 1], Q = c_A k_B S_A, R = c_B s_B k_A P_B \end{array}
                    K \parallel M = \mathsf{kdf}(\pi(Q), \pi(R), \mathsf{Id}_A \parallel \mathsf{Id}_B[\parallel OI])
                    tag_{R} = mac_{M}(h_{2}, k_{R}P_{A}, k_{A}P_{R}, Id_{R}, Id_{A})
B \rightarrow A Id<sub>B</sub>, Cert<sub>B</sub>, k_B P_A, tag_B
A: Q = c_A s_A k_B P_A, R = c_B k_A S_B
                    K \parallel M = \mathsf{kdf}(\pi(Q), \pi(R), \mathsf{Id}_A \parallel \mathsf{Id}_B[\parallel OI])
                    If tag_B \neq mac_M(h_2, k_B P_A, k_A P_B, Id_B, Id_A),
                     terminates the session with an error
                    tag_A = mac_M(h_3, k_A P_B, k_B P_A, Id_A, Id_B)
A \rightarrow B tag<sub>A</sub>
                    If tag_A \neq mac_M(h_3, k_A P_B, k_B P_A, Id_A, Id_B),
                     terminates the session with an error
```

Limonnik-3 and quantum threat

Limonnik-3 is not quantum-secure.

Classical security: $O(\sqrt{\min(q_A, q_B)})$ by Pollard's ρ .

Quantum security: $O(\ln^2 \min(q_A, q_B))$ by Schor's method.

Can we replace the basic Diffie-Hellman key exchange by a postquantum primitive?

Consider Supersingular Isogeny Diffie-Hellman (L. De Feo, D. Jao, J. Plût, 2011-2014).

$$\begin{array}{ccc} E & \stackrel{\varphi}{-\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} & E/\left\langle P\right\rangle \\ \psi \Big\downarrow & & \Big\downarrow \\ E/\left\langle Q\right\rangle & \longrightarrow & E/\left\langle P,Q\right\rangle \end{array}$$

SIDH

Public parameters: $p=l_A^{e_A}l_B^{e_B}\cdot f\pm 1$, l_A,l_B – distinct small primes, $(l_A,f)=(l_B,f)=1$, a supersingular elliptic curve $E_0(GF(p^2))$ and bases $\{P_A,Q_A\}$ u $\{P_B,Q_B\}$, generating, resp., $E_0[l_A^{e_A}]$ and $E_0[l_B^{e_B}]$, that is, $\langle P_A,Q_A\rangle=E_0[l_A^{e_A}]$ and $\langle P_B,Q_B\rangle=E_0[l_B^{e_B}]$.

A chooses $n_A \in_R \mathbb{Z}/I_A^{e_A}\mathbb{Z}$, constructs $\varphi_A : E_0 \to E_A$ with the kernel $K_A := \langle P_A + [n_A]Q_A \rangle$. A also computes вычисляет образ $\{\varphi_A(P_B), \varphi_A(Q_B)\}$ and sends them to B together with E_A .

Having received from B the tuple $E_B, \varphi_B(P_B), \varphi_B(Q_B)$, A constructs $\varphi_A': E_B \to E_{AB}$ with the kernel $\langle \varphi_B(P_A) + [n_A] \varphi_B(Q_A) \rangle$.

B proceeds simultaneously. The secret key is the j-invariant of

 $E_{AB} = \varphi' B(\varphi_A(E_0)) = \varphi'_A(\varphi_B(E_0)) = E_0 / \langle P_A + [n_A]Q_A, P_B + [n_B]Q_B \rangle.$

Introducing Limonnitsa

A post-quantum version of Limonnik-3.

- Built upon Limonnik-3 structure.
- Two ephemeral-to-static SIDH.
- Uses (optionally) two distinct parameters sets.
- UKS- and KCI-secure.
- Security argument by weaker reduction to SSDHP.

Fix public parameters for the parties A and B.

- $p_A = 2^{e_{a2}}3^{e_{a3}} 1$,
- $E_{A0}(GF(p^2));$
- linearly independent points $P_{A2},Q_{A2}\in E_{A0}[2^{e_{a2}}]$ (that is, $|\langle P_{A2},Q_{A2}\rangle|=2^{2e_{a2}}$)

For the party *B*, we have:

- $p_B = 2^{e_{b2}}3^{e_{b3}} 1$,
- $E_{B0}(GF(p_B^2));$
- linearly independent points $P_{B2},Q_{B2}\in E_{B0}[2^{e_{b2}}]$ (that is, $|\langle P_{B2},Q_{B2}\rangle|=2^{2e_{b2}}$)

8/24

Now, the party A selects its secret static key as an integer s_A such that $0 < s_A < 2^{e_{a2}}$, constructs the isogeny $\varphi_A : E_A \to E_A/\langle P_{A2} + [s_A]Q_{A2}\rangle$, calculates $E_A = E_{A0}/\langle P_{A2} + [s_A]Q_{A2}\rangle$, $P_A = \varphi_A(P_{A3})$, $Q_A = \varphi_A(Q_{A3})$, sets its static public key to $\{E_A, P_A, Q_A\}$, and acquires a certificate Cert_A.

B selects its static key as an integer s_B such that $0 < s_B < 2^{e_{b2}}$, constructs the isogeny $\varphi_B : E_B \to E_B / \langle P_{B2} + [s_B]Q_{B2} \rangle$, calculates $E_B = E_{B0} / \langle P_{B2} + [s_B]Q_{B2} \rangle$, $P_B = \varphi_B(P_{B3})$, $Q_B = \varphi_B(Q_{B3})$, sets is static public key as $\{E_B, P_B, Q_B\}$, and acquires a certificate Cert_B as well.

```
k_A \in_R [1, 3^{e_{b3}}], S_{AB} = P_{B3} + [k_A]O_{B3},
A:
                    \varphi_{AB}: E_B \to E_B / \langle S_{AB} \rangle – an isogeny with the kernel \langle S_{AB} \rangle
                    E_{AB} = E_{B0} / \langle S_{AB} \rangle (that is, E_{AB} = \varphi_{AB}(E_{B0}))
                    \mathcal{K}_A = \{ E'_A, \varphi_{AB}(P_{B2}), \varphi_{AB}(Q_{B2}) \} – A's ephemeral public key
A \rightarrow B Id<sub>A</sub>, Cert<sub>A</sub>, \mathcal{K}_A
                    k_R \in [1, 3^{e_{a3}}], S_{RA} = P_{A3} + [k_R]Q_{A3},
B :
                    \varphi_{BA}: E_A \to E_B' / \langle S_{BA} \rangle – an isogeny with the kernel \langle S_{BA} \rangle
                    E_{BA} = E_{A0} / \langle S_{BA} \rangle (that is, E_{BA} = \varphi_{BA}(E_{A0}))
                    \mathcal{K}_B = \{E_B', \varphi_{BA}(P_{A2}), \varphi_{BA}(Q_{A2})\} – B's session public key
                    T_{AB} = P_A + [k_B]O_A
                    T'_{AB} = \varphi_{AB}(P_{B2}) + [S_B]\varphi_{AB}(Q_{B2})
                    \psi_{AB}: E'_A \to E'_A / \langle T_{AB} \rangle – an isogeny with the kernel \langle T_{AB} \rangle
                    \psi'_{AB}: E_B \to E_B / \langle T'_{AB} \rangle – an isogeny with the kernel \langle T'_{AB} \rangle
                    E_{AB} = \psi_{AB}(E'_A); E'_{AB} = \psi'_{AB}(E_B)
                    K \parallel M = kdf(j(E_{AB}) \parallel j(E'_{AB}) \parallel Id_A \parallel Id_B[\parallel OI])
                    tag_{B} = mac_{M}(h_{2}, \mathcal{K}_{B}, \mathcal{K}_{A}, Id_{B}, Id_{A})
B \rightarrow A Id<sub>B</sub>, Cert<sub>B</sub>, \mathcal{K}_B, tag<sub>B</sub>
```

```
T_{BA} = \varphi_{BA}(P_{A2}) + [s_A]\varphi_{BA}(Q_{A2})
A:
                   T'_{PA} = P_B + [k_A]Q_B
                   \psi'_{BA}: E'_{BA} \to E'_{BA}/\langle T_{BA} \rangle – an isogeny with the kernel \langle T_{BA} \rangle
                   \psi_{BA}: E_A \to E_A/\langle T'_{PA} \rangle – an isogeny with the kernel \langle T'_{PA} \rangle
                   E'_{BA} = \psi'_{BA}(E'_{B}); E_{BA} = \psi'_{AB}(E_{A})
                   K \parallel M = \mathsf{kdf}(j(E'_{BA}) \parallel j(E_{BA}) \parallel \mathsf{Id}_A \parallel \mathsf{Id}_B[\parallel OI])
                   If tag_B \neq mac_M(h_2, \mathcal{K}_B, \mathcal{K}_A, Id_B, Id_A),
                   terminates the session with an error
                   tag_A = mac_M(h_3, \mathcal{K}_A, \mathcal{K}_B, Id_A, Id_B)
A \rightarrow B
                   tag_A
B :
                   If tag_A \neq mac_M(h_3, \mathcal{K}_A, \mathcal{K}_B, Id_A, Id_B),
                   terminates the session with an error
```

Security properties

- Secret key recovery: $\sqrt[3]{p}$ quantum and \sqrt{p} classical.
- Parties' authentication: PKI.
- UKS-attacks: by tags structure similar to Limonnik-3.
- KCI-атаки: immune by the basic design of MTI/A0.
- Forward secrecy: for A, B, but not for A and B.
- Parameters: 902-bit prime, to keep up with Kuznyechik.

Security reductions

Problem 1.

Computational isogeny Diffie-Hellman, SSCDH: let $\varphi_A: E_0 \to E_A$ – an isogeny with kernel $\langle P_A + [n_A]Q_A \rangle$, and $\varphi_B: E_0 \to E_B$ – an isogeny with kernel $\langle P_B + [n_B]Q_B \rangle$, where n_A is chosen uniformly randomly from $\mathbb{Z}/I_A^{e_A}\mathbb{Z}$ and n_B is chosen uniformly randomly from $\mathbb{Z}/I_B^{e_B}\mathbb{Z}$. Given E_A, E_B and the images $\varphi_A(P_B), \varphi_A(Q_B), \varphi_B(P_A), \varphi_B(Q_A)$, find the j-invariant of the curve $E_0/\langle P_A + [n_A]Q_A, P_B + [n_B]Q_B \rangle$.

Security reductions

Problem 2.

<u>Decisional isogeny Diffie-Hellman, SSDDH</u>: Given a tuple sampled with probability 1/2 from one of the following two distributions

- $(E_A, E_B, \varphi_A(P_B), \varphi_A(Q_B), \varphi_B(P_A), \varphi_B(Q_A), E_{AB})$, where $(E_A, E_B, \varphi_A(P_B), \varphi_A(Q_B), \varphi_B(P_A), \varphi_B(Q_A)$ as before, $E_{AB} \cong E_0/\langle P_A + Q_A, [m]P_B + [n]Q_B \rangle$;
- $(E_A, E_B, \varphi_A(P_B), \varphi_A(Q_B), \varphi_B(P_A), \varphi_B(Q_A), E_C)$, where $(E_A, E_B, \varphi_A(P_B), \varphi_A(Q_B), \varphi_B(P_A), \varphi_B(Q_A)$ as before, and $E_C \cong E_0/\langle P_A + [n']Q_A, P_B + [n']Q_B \rangle$ where m', n' are chosen at random from from $\mathbb{Z}/I_B^{e_B}\mathbb{Z}$);

determine from which distribution the tuple is sampled.

Security reductions II

We state now a weaker version of the security definition. We allow an adversary *M* to perform any of the following queries.

- Initiate a session between any chosen parties.
- <u>Send</u> messages from a party to another, which is followed by a correct (prescribed by the protocol) response.
- <u>Execute</u> a correct session between any chosen parties.
- <u>Corrupt</u> a party (that is, to learn any secret keys, as well as all generated shared keys and any local state information).

Security reductions II

Note that *M* cannot perform any Reveal queries.

Define as $\Lambda(n)$ the set of all Limonnitsa public parameters for a chosen security parameter n: that is, all primes of an appropriate form with bitlentgh n, all possible supersingular elliptic curves defined over those primes.

Security reductions II

Definition 3.

A key agreement protocol is said to be <u>weak-AKE-secure</u> if the following conditions hold:

- If two honest parties complete matching sessions then, except with negligible probability, they both compute the same session key.
- ② No polynomially bounded adversary M defined above can distinguish the session key of a fresh session from a randomly chosen session key with probability greater than 1/2 plus a negligible fraction.

Security reductions III

Theorem 4.

Let the SSDDH problem for Λ be computationally hard. Let kdf be modelled by a pseudorandom function, let mac be secure against forgery attack. Then Limonnitsa is secure in the sense of Definition 3.

Security reductions III

Proof (sketch).

The proof repeats the analogous results for Limonnik-3 (Grebnev, 2014-2019) in a weaker security model.

- We introduce L-2, a reduced version of Limonnitsa, by removing authentication tags and replacing kdf by a hash function.
- We consider the only possibility for an adversary to break L-2: that is, to solve the SSCDH.
- We show that there exists a polynomial-time algorith with success probability

$$\frac{1}{n^2k}$$
Pr[Success(\mathcal{M})],

where $Pr[Success(\mathcal{M})]$ is the probability that \mathcal{M} breaks weak AKE-secutity of L-2.

• We use then the UC-property to show that Limonnitsa is secure.

Attacks against static keys

The security model does not cover adaptive attacks by Galbraith, Petit, Shani, and Ti.

Suppose B has a static public key $E_B = E/\langle P_B + [\beta]Q_B \rangle$. Let φ_X be A's isogeny, $R = \varphi_X(P_B)$, $S = \varphi_X(Q_B)$. Suppose A knows K_i , $0 < K_i < l_2^i$, such that $\beta = K_i + l_2^i z$, let z_0 be guess for $z \pmod{l_2}$. The attack is to choose $R' = R + [-l_2^{m-1-i}K_i - l_2^{m-1}z_0]S$ and $S' = [1 + l_2^{m-i-1}]S$ and send $\{E_X, R', S'\}$ to B.

B computes

$$R' + [\beta]S = \cdots = (R + [\beta]S) + [(z - z_0)l_2^{m-1}]S,$$

the resulting kernel is correct iff $z \equiv z_0 \pmod{l_2}$.

After $(I_2 - 1)e_2$ sessions, the secret key is recovered.

4□ > 4□ > 4□ > 4□ > 4□ > 900

Public key validation

We use Kirkwood's trick to counter this attack.

Instead of choosing random ephemeral secret key k_A , the party A chooses a single random seed $r_A \in V^*$ and uses a pseudo-random function prf to output $k_A = \operatorname{prf}(r_A)$. Then, tag_A is calculated as $tag_A = \operatorname{encrypt}_M(h_2, r_A, K_A, K_B, \operatorname{Id}_A, \operatorname{Id}_B)$. The party B, having calculated the session key, recovers the seed r_A and repeats A's computations in order to verify that the keys were constructed as prescribed, otherwise, terminates the session. The parties B and A proceed vice versa.

21/24

```
A:
                    C_A \in_R V^*, k_A = H(S_A), S_{AB} = P_{B3} + |k_A| O_{B3},
                    \varphi_{AB}: E_B \to E_B / \langle S_{AB} \rangle – an isogeny with the kernel \langle S_{AB} \rangle
                    E_{AB} = E_{B0} / \langle S_{AB} \rangle (that is, E_{AB} = \varphi_{AB}(E_{B0}))
                    \mathcal{K}_A = \{ E'_A, \varphi_{AB}(P_{B2}), \varphi_{AB}(Q_{B2}) \} – A's ephemeral public key
A \rightarrow B Id<sub>A</sub>, Cert<sub>A</sub>, \mathcal{K}_A
B :
                   S_R \in_R V^*[1, 3^{e_{a3}}], k_R = H(S_R), S_{RA} = P_{A3} + [k_R]Q_{A3},
                    \varphi_{BA}: E_A \to E'_B / \langle S_{BA} \rangle – an isogeny with the kernel \langle S_{BA} \rangle
                    E_{BA} = E_{A0} / \langle S_{BA} \rangle (that is, E_{BA} = \varphi_{BA}(E_{A0}))
                    \mathcal{K}_B = \{E_B', \varphi_{BA}(P_{A2}), \varphi_{BA}(Q_{A2})\} – B's session public key
                    T_{AB} = P_A + [k_B]O_A
                    T'_{AB} = \varphi_{AB}(P_{B2}) + [S_B]\varphi_{AB}(Q_{B2})
                    \psi_{AB}: E'_A \to E'_A / \langle T_{AB} \rangle – an isogeny with the kernel \langle T_{AB} \rangle
                    \psi'_{AB}: E_B \to E_B / \langle T'_{AB} \rangle – an isogeny with the kernel \langle T'_{AB} \rangle
                    E_{AB} = \psi_{AB}(E'_A); E'_{AB} = \psi'_{AB}(E_B)
                    K \parallel M = kdf(j(E_{AB}) \parallel j(E'_{AB}) \parallel Id_A \parallel Id_B[\parallel OI])
                    tag_B = encrypt_M(h_2, c_B, \mathcal{K}_B, \mathcal{K}_A, Id_B, Id_A)
B \rightarrow A Id<sub>B</sub>, Cert<sub>B</sub>, \mathcal{K}_B, tag<sub>B</sub>
```

```
A:
                      T_{BA} = \varphi_{BA}(P_{A2}) + [S_A]\varphi_{BA}(Q_{A2})
                      T'_{PA} = P_B + [k_A]O_B
                      \psi'_{BA}: E'_{BA} \to E'_{BA}/\langle T_{BA} \rangle – an isogeny with the kernel \langle T_{BA} \rangle
                      \psi_{BA}: E_A \to E_A/\langle T'_{BA} \rangle – an isogeny with the kernel \langle T'_{BA} \rangle
                      E'_{PA} = \psi'_{PA}(E'_{P}); E_{BA} = \psi'_{AP}(E_{A})
                      K \parallel M = \mathsf{kdf}(j(E'_{\mathsf{BA}}) \parallel j(E_{\mathsf{BA}}) \parallel \mathsf{Id}_{\mathsf{A}} \parallel \mathsf{Id}_{\mathsf{B}}[\parallel OI])
                       decrypts c'_{R}, k'_{R} = H(c'_{R}), computes \varphi'_{RA}
                       - an isogeny with the kernel P_{A3} + [k'_{P}]Q_{A3},
                      if \varphi'_{BA}(P_A2) \neq \varphi_{BA}(P_A2) or \varphi'_{BA}(Q_A2) \neq \varphi_{BA}(Q_A2),
                      sets K \parallel M = \mathsf{kdf}(\mathsf{j}(E'_{\mathsf{RA}}) \parallel n \parallel \mathsf{Id}_{\mathsf{A}} \parallel \mathsf{Id}_{\mathsf{B}}[\parallel \mathsf{OI}]), n \in_{\mathsf{R}} [1, p_{\mathsf{B}}^2]
                      tag_A = encrypt_M(h_3, c_A, \mathcal{K}_A, \mathcal{K}_B, Id_A, Id_B)
A \rightarrow B
                     tag_A
B:
                     decrypts c_A, k_A = H(c_A), computes \varphi'AB
                       - an isogeny with the kernel P_{B3} + [k'_B]Q_{B3},
                      if \varphi'_{BA}(P_A2) \neq \varphi_{BA}(P_A2) or \varphi'_{BA}(Q_A2) \neq \varphi_{BA}(Q_A2),
                     sets K \parallel M = \mathsf{kdf}(n \parallel j(E'_{AB}) \parallel \mathsf{Id}_A \parallel \mathsf{Id}_B[\parallel OI]), n \in_R [1, p_A^2]
```

Thank you

Thanks for your attention.

grebnev_sv@tc26.ru

24/24