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ECDLP

Let p – prime, elliptic curve in short Weierstrass form:

E : y2 ≡ x3 + ax+ b (mod p), |E| = m = cq,

where 4a3 + 27b2 ̸≡ 0 (mod p) and q – prime.
Definition
Let P ∈ E, | < P > | = q and Q ∈< P >. ECDLP is problem of
finding k ∈ Zq such Q = [k]P = P+ · · ·+ P︸ ︷︷ ︸

k times

.

• Complexity of ECDLP for arbitrary elliptic curve is O(√q),
• ECDLP ensure the security of:

1. digital signatures (GOST R 34.10-2012),
2. key agreement protocols («Echinacea» R 1323565.1.004-2017,
RTLS 1.2, SP-FIOT),

3. public key encryption schemes.
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Current Conditions for Elliptic Curve Parameters
since GOST R 34.10 (2001 & 2012)

Let α ∈ {254, 508}, β ∈ {256, 512}.
• 2α < q < 2β,
• m ̸= p (against Sato, Araki, Smart & Semaev attacks),
• J(E) ̸≡ 0, 1728 (mod p), where

J(E) ≡ 1728
4a3

4a3 + 27b2 (mod p)

(against degenerate form of elliptic curve),
• for fixed B the condition pi ̸≡ 1 (mod q) holds for all
i = 1, 2, . . . ,B, where

B =

{
31, if β = 256,
131, if β = 512.

(against MOV attack)
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Modern Attacks On ECDLP
based on «weak» parameters of elliptic curves

Attack of Petit, Kosters and Messeng (2016) uses the
decomposition

p− 1 =
∏
i=1

pαi
i .

1. applicable if pi – small,
2. based on solving a system of non-linear polynomials over Fp,
generated by Semaev’s summation polynomials,

3. nowadays we don’t have any practical realizations,
4. but in the future this can be done.
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Modern Attacks On ECDLP
based on «weak» parameters of elliptic curves

Attack of Nesterenko (CTCrypt 2015) uses the decomposition

q− 1 =
∏
i=1

qαi
i .

1. for every t|(q− 1) exists a set St = {k : ordqk = t} and the
complexity of ECDLP for every k ∈ St is O

(√
t log(q)

)
,

2. |S| = φ(t), where φ() is a Euler totient function,
3. if t is small, then keys in St are «weak»,
4. checking a «weakness» of k is equal to solving ECDLP and
may be applied to standartized elliptic curves,

5. if we choose k randomly from Zq the probability of
«weakness» is very small,

6. one can construct statistically indistinguishable «weak» keys.
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Standardized Elliptic Curves
parameters set «A» from RFC 4357

p = 2256 − 617, a = −3, b = 166.

1. decomposition of p− 1 = s× p1, where ⌈log2(p1)⌉ = 134 and

s = 2× 7× 43× 9109× 87640387787×
× 16876409960174552741.

2. decomposition of q− 1 = t× q1, where ⌈log2(q1)⌉ = 186 and

t = 2279774945345390344362 =

= 2× 3× 7× 17× 37× 127× 121493× 5592900119.

3. hence exists exactly t = ∑
1⩽u⩽t,u|t φ(u) keys, 270 < t < 271,

such the complexity of ECDLP’s solution for these keys no
more than O(244).
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Standardized Elliptic Curves
parameters set «B» from RFC 4357

p = 2255 + 3225, a = −3,
b = 28091019353058090096996979000309560759124368558014865957655842872397301267595.

1. decomposition of p− 1 is

p− 1 = 23 × 11× 33797× 633062117× 43400749232432159×
× 39607009966486015397× 17888439653017795004024467.

2. decomposition of q− 1 = t× q1, where ⌈log2(q1)⌉ = 189 and

t = 94673263789516324202 = 2× 47336631894758162101.

3. hence exists exactly t = ∑
1⩽u⩽t,u|t φ(u) keys, 266 < t < 267,

such the complexity of ECDLP’s solution for these keys no
more than O(242).
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Standardized Elliptic Curves
parameters set «C» from RFC 4357

a = −3, b = 32858.
p = 70390085352083305199547718019018437841079516630045180471284346843705633502619.

1. decomposition of p− 1 = s× p1, where ⌈log2(p1)⌉ = 128 and
s = 2× 17× 37× 113× 244997×

× 7044765983457327077589232961.

2. decomposition of q− 1 = tq1, where 2137 < q1 < 2138 and
t = 269835642637977294912925317964710600 = 23 × 32 × 52×

× 47× 207130852417× 15398703602419036183.

3. hence exists exactly t = ∑
1⩽u⩽t,u|t φ(u) keys, 2117 < t < 2118,

such the complexity of ECDLP’s solution for these keys no
more than O(267).

Alexey Nesterenko MIEM HSE May 29th 8 / 22



Standardized Elliptic Curves
id-tc26-gost3410-2012-256-ParamSetA from R 50.1.114-2016

p = 2256 − 617 (as well as RFC 4357 paramsetA)
a = 87789765485885808793369751294406841171614589925193456909855962166505018127157
b = 18713751737015403763890503457318596560459867796169830279162511461744901002515.

Elliptic curve has order m = 4q and q− 1 = tq1, where
2242 < q1 < 2243 and

t = 3194 = 2× 1597× q1,
Hence exists exactly t = 3194 keys, 211 < t < 212, such the
complexity of ECDLP’s solution for these keys no more than
O(214).
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Definition of Strong Elliptic Curves

Note:
p is a safe prime, if p is a prime and p−1

2 is a prime.

Definition
E is a strong elliptic curve if conditions from GOST R 34.10 holds
and p and q are safe primes.

Note:
It’s seems like RSA modulus m where m = pq and p, q are safe
primes.
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Definition of Strong Elliptic Curves
Additional Condition for Endomorphisms Ring. Part I

Every strong elliptic curve has «complex multiplication», i.e.
• Let P,Q ∈ E and τ : E → E ∈ End(E) endomorphism:

τ(O) = O, τ(P+ Q) = τ(P) + τ(Q),

• Let τ, µ ∈ End(E). We can define τ(P) + µ(P) - addition, τ(µ(P)) -
multiplication ⇒ End(E) is a ring,

• End(E) is isomorphic to some order oK ⊆ K = Z[
√
−∆] ⊂ Q(

√
−d),

∆ =

{
d, if d ≡ 1 (mod 4),
4h, if d ≡ 2, 3 (mod 4).

and d > 1 is square free.

• if P = P(x, y) and τ ∈ oK = {1, ω}, then

τ(P) =
(
f(x), y · f

′(x)
τ

)
, where f(x) = u(x)

w(x) ,

u(x),w(x) ∈ H = K(j(ω)), deg u(x) = N(τ), and τ(P) = [τ ]P
multiplication on complex number τ .
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Definition of Strong Elliptic Curves
Additional Condition for Endomorphisms Ring. Part II

• Examples of endomorphisms:
• [k]P = P+ · · ·+ P,
• Let P = P(x, y). Frobenius endomorphism is ϕ(P) = (xp, yp)
and N(ϕ) = p.

• Every Z[
√
−∆] has finite order h of group of classes of ideals, called

«class number» and [H : K] = h, where H = K(j(ω)) – Hilbert
class field, ω ∈ Z[−∆] and j is a modular function.

Definition
E is very strong if
1. the class number of Z[

√
−∆] should1 be at least h = 200.

Note:
Nowadays we don’t know a method of solving ECDLP based on theory of
complex multiplication. But we know that construction of τ ∈ oK such
Q = τ(P) = [τ ]P is equivalent to solving ECDLP.

1Technical Guideline TR-03111. Elliptic curve cryptography. German Federal Office for Information Security. 2007.
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Definition of Strong Elliptic Curves
Additional Condition for Twist of Elliptic Curve

Definition
Elliptic curve Ê is a twist of E, End(E) ⊆ Z(

√
−∆) ⊂ Q(

√
−d), if

• j(Ê) = J(E),
• |Ê| = p+ 1− δx, where 4p = x2 + dy2 and

|E| = mδ = p+ 1 + δx, 0 < x < 2
√p, δ ∈ {−1, 1}.

Since Ê ∼ E over H we can hope that ECDLP on E has the same
complexity as ECDLP on Ê.
Definition
E is very strong if
2. Ê has order m−δ = cr, 2α < r < 2β and r is safe prime2.
2Similar property was introduced by D.Bernstein for Curve25519 — r must be prime.
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Methods of Construction

Basic ways to construct:
1. construct safe prime p,
2. choose one variant from follows:

2.1 generate random or pseudorandom a, b ∈ Fp and evaluate |E|
with SEA algorithm,

2.2 construct safe q and evaluate a, b with theory of complex
multiplication.

• The first way has property of «provable pseudorandomness» when
a ≡ −3 (mod p), b ≡ Hash(ξ) (mod p)

for some ξ and small probability of success.
• We use the second way since he may be described as rigidious
algorithm.

• Both ways are exactly deterministic algorithms.
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A CM-Theory Algorithm
Step I: Finding appropriate values of p and q for given 0 < α < β

1. Consider a sequence pn = p0 − 12n, where p0 ≡ 11 (mod 12),
p0 < 2α and n = 1, 2, . . .

2. For every safe prime pn try to solve Cornaccia’s equation

4pn = x2 + dy2,

for natural x, y > 1 and square free integer d = 2, 3, 5, 6, . . . , 106

(this value is algorithm parameter).
3. Define mδ = p+ 1 + δx, δ ∈ {−1, 1}, and check

mδ = cq, 2α < q < 2β , q− safe.

4. Since ordqp|(q− 1) = 2q1, q1 - prime, we check only

p2 ̸≡ 1 (mod q)

for GOST R 34.10-2012 conditions (q1 or 2q1 is a MOV degree).
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A CM-Theory Algorithm
Step II: Constructing a coefficients a, b of elliptic curve

1. Consider oK = {1, ω} ⊆ Z[
√
−∆]. Let η(z) is Dedekind function

and f1(z) is Weber function

η(z) = q24
∞∏
n=1

(1− qn), f1(z) =
η(2z)
η(z) , where q = e2πiz,

then modular function j defined by equation

j(z) = (f1(z)24 + 16)3

f1(z)24
.

2. Since j(ω) is an algebraic number, deg j(ω) = h we can construct
polynomial Hd(x) ∈ Z[x] for which the equality Hd(j(ω)) = 0 holds
and degHd(x) = h.

3. Find and sort in ascending order all roots of Hd(x) modulo p.
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A CM-Theory Algorithm
Step II: Constructing a coefficients a, b of elliptic curve

4. Every root jp means as j-invariant of elliptic curve E over Fp, hence
find first k, such −k−1 is quadratic residue modulo p, where

k ≡ jp
1728− jp

(mod p).

5. The coefficients a, b is satisfy to equalities{
a ≡ 3ku2 ≡ −3 (mod p),
b ≡ 2ku3 (mod p),

where u < p− u and u2 ≡ −k−1 (mod p).
6 Since p = 12n+ 11 we have

(
−1
p

)
≡ −1 (mod p) then u or −u is

non quadratic residue modulo p (one can write εu, ε ∈ {−1, 1}) and
â = −3, b̂ ≡ −b (mod p)

is a coefficients of twist Ê.
7. Using SEA algorithm one can check which curve has order mδ = cq.
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Algorithm realization
with Magma code example

• Step I was written by author in C++ code.
• Step II was written by author in Magma like this

Fp := GF(p);
R<x> := PolynomialRing(Fp);
fp := R!HilbertClassPolynomial(∆);
for jp in Roots(fp) do
k := jp[1]*(F!Modinv( Integers()!(1728 - jp[1]), p ));
if JacobiSymbol( Integers()!(-k), p) eq 1 then
c := Modinv( Modsqrt( Integers()!(-k), p ), p);
ec := EllipticCurve( [K!(3*k*c2), K!(2*k*c3)]);
m := Order(ec);
if m eq mδ then
return true;

end if;
end if;

end for;
• Dual core IntelCore i5 processor with 4 Gb Memory and some
days of calculations.
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Results of practical experiments
Statistics

For fixed α = 254, β = 256.
We test all integers p = 2256 − t, where

p ≡ 11 (mod 12) and 5 ≤ t < 100.000.000 = 108.

We found:
• 116014 — primes,
• 879 — safe primes,
• 22 — «strong» elliptic curves,
• 7 — elliptic curves, with classs number h > 200,
• 0 — very «strong» curves.
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Results of practical experiments
Elliptic Curves

E : y2 ≡ x3 − 3x+ 2kεu3 (mod p), p = 2256 − t, |E| = mδ,

where
• mδ = p+ 1 + δx = cq, 4p = x2 + dy2, 2254 < q < 2256,
• k ≡ jp,j

1728−jp,i (mod p), jp,i – i-th root Hd(x) modulo p,
• u2 ≡ −k−1 (mod p), degHd = h, δ, ε ∈ {−1, 1}.

number t d δ c h i ε log2r
4 5460857 640030 -1 2 544 1 1 139
9 34771673 338062 1 2 224 1 -1 58
14 48208517 580907 -1 3 240 1 1 117
16 57688733 760618 1 2 446 2 -1 184
18 63233777 939262 1 2 272 2 1 78
19 78045197 822155 -1 3 308 2 1 88
21 90054089 935518 -1 2 576 2 1 147

where |Ê| = m−δ = ĉr, r — greater prime.
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Unanswered Question

Let m+1 = p+ 1 + x = 2q and m−1 = p+ 1− x = 2r, q > r ⇒
Question:
How to find q+ r = p+ 1, where p, q, r — safe primes.

3 + 5 = 7 + 1
5 + 7 = 11 + 1
7 + 13 = 19 + 1
13 + 11 = 23 + 1
17 + 31 = 47 + 1

· · ·

No more found for 5 ≤ q, r < 108 :((

Alexey Nesterenko MIEM HSE May 29th 21 / 22



Thank You for Attention! Questions?
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