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Let p — prime, elliptic curve in short Weierstrass form:

E: Y¥=x*+ax+b (modp), |E=m=cq,
where 423 +27b*> # 0 (mod p) and g — prime.
Definition

Let PEE |<P>|=gqgand Qe< P>. ECDLP is problem of
finding k€ Zg such Q=[klP=P+---+ P.
—_——

k times

® Complexity of ECDLP for arbitrary elliptic curve is O(,/q),
® ECDLP ensure the security of:
1. digital signatures (GOST R 34.10-2012),

2. key agreement protocols («Echinacea» R 1323565.1.004-2017,
RTLS 1.2, SP-FIOT),

3. public key encryption schemes.
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Current Conditions for Elliptic Curve Parameters

since GOST R 34.10 (2001 & 2012)

Let o € {254,508}, B € {256,512},
° 20 < g< 26
® m # p (against Sato, Araki, Smart & Semaev attacks),
e J(E)#0,1728 (mod p), where
43

(against degenerate form of elliptic curve),

e for fixed B the condition p' # 1 (mod q) holds for all
i=1,2,...,B, where

g_{ 3L if B=256,
— 1 131, if B=512.

(against MOV attack)
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Modern Attacks On ECDLP

based on «weak» parameters of elliptic curves

Attack of Petit, Kosters and Messeng (2016) uses the

decomposition
p—1=]]r"
i=1

1. applicable if p; — small,

2. based on solving a system of non-linear polynomials over I,
generated by Semaev's summation polynomials,

3. nowadays we don’t have any practical realizations,

4. but in the future this can be done.
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Modern Attacks On ECDLP

based on «weak» parameters of elliptic curves

Attack of Nesterenko (CTCrypt 2015) uses the decomposition

g—1=]]qa"
i=1

1. for every t|(q — 1) exists a set S; = {k: ordgk = t} and the
complexity of ECDLP for every k € S; is O(ﬁlog(q)),

2. |S| = ¢(t), where ¢() is a Euler totient function,
3. if tis small, then keys in S; are «weaky,

4. checking a «weakness» of k is equal to solving ECDLP and
may be applied to standartized elliptic curves,

5. if we choose k randomly from Z, the probability of
«weaknessy is very small,

6. one can construct statistically indistinguishable «weak» keys.
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Standardized Elliptic Curves

parameters set «A» from RFC 4357

p=2%%_617, a=-3, b=166.
1. decomposition of p — 1 = s x pj, where [l0g,(p1)] = 134 and

§=2 X7 x43 x 9109 x 87640387787 x
x 16876409960174552741.

2. decomposition of g — 1 =t x g1, where [log,(qg1)] = 186 and

t = 2279774945345390344362 =
=2xX3 xT7x17x37x 127 x 121493 x 5592900119.

3. hence exists exactly t =3, ., i, p(u) keys, 270 < t < 27,
such the complexity of ECDLP’s solution for these keys no
more than O(2*%).
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Standardized Elliptic Curves

parameters set «B» from RFC 4357

p=2%% 43225 a= -3,

b = 28091019353058090096996979000309560759124368558014865957655842872397301267595.

1. decomposition of p— 1 is

p—1=2%x11 x 33797 x 633062117 x 43400749232432159 x
x 39607009966486015397 x 17888439653017795004024467.

2. decomposition of g — 1 =t x g1, where [logy(q1)] = 189 and

t = 94673263789516324202 = 2 x 47336631894758162101.

3. hence exists exactly t = 33, i, p(u) keys, 200 < t < 2°7,
such the complexity of ECDLP’s solution for these keys no
more than O(2%?).
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Standardized Elliptic Curves

parameters set «C» from RFC 4357

a= -3, b=32858.

p = 70390085352083305199547718019018437841079516630045180471284346843705633502619.

1. decomposition of p— 1 = s x py, where [log,(p;)] = 128 and

§=2x 17 x 37 x 113 x 244997 x
x 7044765983457327077589232961.

2. decomposition of g — 1 = tgy, where 2!37 < g; < 2!%% and

t = 269835642637977294912925317964710600 = 23 x 32 x 52x
x 47 x 207130852417 x 15398703602419036183.

3. hence exists exactly t = 33, <, i, 9(u) keys, 217 <t < 2118,
such the complexity of ECDLP’s solution for these keys no
more than O(2°7).
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Standardized Elliptic Curves

id-tc26-gost3410-2012-256-ParamSetA from R 50.1.114-2016

p=2%% _617 (as well as RFC 4357 paramsetA)

87789765485885808793369751294406841171614589925193456909855962166505018127157
18713751737015403763890503457318596560459867796169830279162511461744901002515.

a
b

Elliptic curve has order m = 4q and g — 1 = tq,, where
2242 < g1 < 2243 and
t=3194 =2 x 1597 x qi,

Hence exists exactly t = 3194 keys, 2! < t < 212 such the
complexity of ECDLP's solution for these keys no more than
o(2').
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Definition of Strong Elliptic Curves

Note:
p is a safe prime, if p is a prime and p%l is a prime.

Definition
E is a strong elliptic curve if conditions from GOST R 34.10 holds
and p and ¢ are safe primes.

Note:
It's seems like RSA modulus m where m = pq and p, g are safe
primes.
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Definition of Strong Elliptic Curves

Additional Condition for Endomorphisms Ring. Part |

Every strong elliptic curve has «complex multiplication, i.e.
® let P,Q€ Eand 7: E— E € End(E) endomorphism:
T(0) =0, 7(P+Q) =7(P)+7(Q),
® Let 7,1 € End(E). We can define 7(P) 4+ u(P) - addition, 7(u(P)) -
multiplication = End(E) is a ring,

® End(E) is isomorphic to some order ox C K = Z[v/—A] C Q(v—d),
A d, if d=1 (mod4),
"] 4h, if d=2,3 (mod 4).

® if P=P(x,y) and 7 € og = {1,w}, then

r(P) = (109 220 here ) = 20

T w(x)’

and d > 1 is square free.

u(x), w(x) € H = K(j(w)), deg u(x) = N(7), and 7(P) = [T|P

multiplication on complex number .
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Definition of Strong Elliptic Curves

Additional Condition for Endomorphisms Ring. Part I

® Examples of endomorphisms:
* KP=P+---+P,
® Let P= P(x,y). Frobenius endomorphism is ¢(P) = (xP, y*)
and N(¢) = p.
® Every Z[v/—A] has finite order h of group of classes of ideals, called
«class number» and [H : K] = h, where H = K(j(w)) — Hilbert
class field, w € Z[—A] and j is a modular function.

Definition
E is very strong if

1. the class number of Z[/—A] should! be at least h = 200.

Note:

Nowadays we don't know a method of solving ECDLP based on theory of
complex multiplication. But we know that construction of 7 € ok such

Q@ = 7(P) = [7]P is equivalent to solving ECDLP.

1Technical Guideline TR-03111. Elliptic curve cryptography. German Federal Office for Information Security. 2007.
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Definition of Strong Elliptic Curves

Additional Condition for Twist of Elliptic Curve

Definition
Elliptic curve E is a twist of E, End(E) C Z(v/—A) C Q(v—d), if

« B = B,
® |E| = p+1—dx, where 4p = x> + dy? and

|El=ms=p+1+4+0x, 0<x<2y/p, ¢e{-11}

Since E ~ E over H we can hope that ECDLP on E has the same
complexity as ECDLP on E.

Definition

E is very strong if

2. E has order m_s = cr, 2% < r < 2° and ris safe prime?

2Similar property was introduced by D.Bernstein for Curve25519 — r must be prime.
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Methods of Construction

Basic ways to construct:

1.
2.

construct safe prime p,

choose one variant from follows:

2.1 generate random or pseudorandom a, b € F,, and evaluate |E]
with SEA algorithm,

2.2 construct safe g and evaluate a, b with theory of complex
multiplication.

The first way has property of «provable pseudorandomness» when
a=-3 (mod p), b= Hash(¢) (mod p)
for some £ and small probability of success.

We use the second way since he may be described as rigidious
algorithm.

Both ways are exactly deterministic algorithms.
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A CM-Theory Algorithm

Step I: Finding appropriate values of p and q for given 0 < a < 8

1. Consider a sequence p, = po — 12n, where py = 11 (mod 12),
po<2*and n=1,2,...

2. For every safe prime p, try to solve Cornaccia’s equation

4Pn=X2+dy2,

for natural x, y > 1 and square free integer d = 2,3,5,6,...,10°

(this value is algorithm parameter).

3. Define ms = p+ 1+ dx, 6 € {—1,1}, and check
ms =cq, 2°<q<?2° q-—safe.
4. Since ordgp|(g — 1) = 2q1, g1 - prime, we check only
p’#1 (mod q)
for GOST R 34.10-2012 conditions (g1 or 2q; is a MOV degree).
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A CM-Theory Algorithm

Step II: Constructing a coefficients a, b of elliptic curve

1. Consider ox = {1,w} C Z[vV/—A]. Let n(z) is Dedekind function
and f1(z) is Weber function

2
_ q24 H 1 _ ’ fl ) "777( Z) whereq— eQﬂ'lz

then modular function j defined by equation

(f.(2)** +16)°
fi(2*
2. Since j(w) is an algebraic number, deg j(w) = h we can construct

polynomial Hy(x) € Z[x] for which the equality Hy(j(w)) = 0 holds
and deg Hy(x) = h.

i(2) =

3. Find and sort in ascending order all roots of Hy(x) modulo p.
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A CM-Theory Algorithm

Step II: Constructing a coefficients a, b of elliptic curve

4. Every root j, means as j-invariant of elliptic curve E over IF,, hence
find first k, such —k~! is quadratic residue modulo p, where

_Jp
PR .
1728 —j, (Mmodp)

5. The coefficients a, b is satisfy to equalities

a=3ku*=-3 (mod p),
b=2ks* (mod p),

where u < p—uand > = —k=1 (mod p).
6 Since p=12n+ 11 we have (_71) = —1 (mod p) then uor —uis
non quadratic residue modulo p (one can write eu, € € {—1,1}) and
4=-3, b=—b (mod p)
is a coefficients of twist E.

7. Using SEA algorithm one can check which curve has order ms = cq.
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Algorithm realization

with Magma code example

® Step | was written by author in C++ code.
® Step Il was written by author in Magma like this

F, := GF(p);
R<x> := PolynomialRing(F,);
fp := R!HilbertClassPolynomial (A);
for j, in Roots(fp) do
k := jp[1]1*(F!Modinv( Integers()!(1728 - j,[11), p ));
if JacobiSymbol( Integers()!(-k), p) eq 1 then
¢ := Modinv( Modsqrt( Integers()!(-k), p ), p);
ec := EllipticCurve( [K! (3xk*c?), K1 (2xkxc)1);
m := Order(ec);
if m eq ms then
return true;
end if;
end if;
end for;
® Dual core IntelCore i5 processor with 4 Gb Memory and some

days of calculations.
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Results of practical experiments

Statistics

For fixed o = 254, 8 = 256.

We test all integers p = 22°6 — ¢, where

p=11 (mod12) and 5 <t < 100.000.000 = 10°.

We found:
® 116014 — primes,
e 879 — safe primes,
® 22 — «strong» elliptic curves,
e 7 — elliptic curves, with classs number h > 200,

® () — very «strong» curves.
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Results of practical experiments

Elliptic Curves

E:y=x>—3x+2kei® (mod p), p=2°—t |E =m;,
where
°* ms=p+1+40x=cq 4p=x*+ dy? 2% < g < 22,
* k= 385~ (mod p), jp,;i = i-th root Hy(x) modulo p,

— 1728 j
o =kt (mod p), degHy = h, §,e € {—1,1}.

number | t d 0 | ¢ h i | € | logar
4 | 5460857 640030 | -1 | 2 | 544 | 1|1 139
9 | 34771673 | 338062 | 1 | 2| 224 |1 ]| -1 58
14 | 48208517 | 580907 | -1 | 3 | 240 | 1| 1 117
16 | 57688733 | 760618 | 1 | 2 | 446 | 2 | -1 184
18 | 63233777 | 939262 | 1 | 2 | 272 | 2| 1 78
19 | 78045197 | 822155 | -1 | 3 | 308 | 2| 1 88
21 | 90054089 | 935518 | -1 | 2 | 576 | 2 | 1 | 147

where |E| = m_s = ¢r, r — greater prime.
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Unanswered Question

Let my1=p+1+x=2gand m_1=p+1—x=2r,g>r=

Question:
How to find g+ r= p+ 1, where p, q, r — safe primes.

345 = T7+1
547 = 1141
7413 = 1941
13411 = 2341

17+31 = 47 +1

No more found for 5 < q,r < 10% :((
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Thank You for Attention! Questions?
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	Why?

