

Constructing of Strong Elliptic Curves Suitable for Cryptography Applications

With Consideration of Russian Standardized Elliptic Curves

Alexey Nesterenko

anesterenko@hse.ru

HSE Tikhonov Moscow Institute of Electronics and Mathematics (MIEM HSE)

May 29th

Let p – prime, elliptic curve in short Weierstrass form:

$$E: \quad y^2 \equiv x^3 + ax + b \pmod{p}, \quad |E| = m = cq,$$

where $4a^3 + 27b^2 \neq 0 \pmod{p}$ and q - prime.

Definition

Let $P \in E$, | < P > | = q and $Q \in < P >$. ECDLP is problem of finding $k \in \mathbb{Z}_q$ such $Q = [k]P = \underbrace{P + \cdots + P}_{k \text{ times}}$.

- Complexity of ECDLP for arbitrary elliptic curve is $O(\sqrt{q})$,
- ECDLP ensure the security of:
 - 1. digital signatures (GOST R 34.10-2012),
 - key agreement protocols («Echinacea» R 1323565.1.004-2017, RTLS 1.2, SP-FIOT),
 - 3. public key encryption schemes.

Current Conditions for Elliptic Curve Parameters since GOST R 34.10 (2001 & 2012)

Let
$$\alpha \in \{254, 508\}$$
, $\beta \in \{256, 512\}$.

- $2^{lpha} < {\it q} < 2^{eta}$,
- $m \neq p$ (against Sato, Araki, Smart & Semaev attacks),
- $J(E) \not\equiv 0,1728 \pmod{p}$, where

$$J(E) \equiv 1728 \frac{4a^3}{4a^3 + 27b^2} \pmod{p}$$

(against degenerate form of elliptic curve),

• for fixed *B* the condition $p^i \not\equiv 1 \pmod{q}$ holds for all $i = 1, 2, \dots, B$, where

$$B = \begin{cases} 31, & \text{if } \beta = 256, \\ 131, & \text{if } \beta = 512. \end{cases}$$

(against MOV attack)

Attack of Petit, Kosters and Messeng (2016) uses the decomposition

$$p-1=\prod_{i=1}p_i^{\alpha_i}.$$

- 1. applicable if p_i small,
- 2. based on solving a system of non-linear polynomials over \mathbb{F}_{p} , generated by Semaev's summation polynomials,
- 3. nowadays we don't have any practical realizations,
- 4. but in the future this can be done.

Attack of Nesterenko (CTCrypt 2015) uses the decomposition

$$q-1=\prod_{i=1}q_i^{\alpha_i}.$$

- 1. for every t|(q-1) exists a set $S_t = \{k : \operatorname{ord}_q k = t\}$ and the complexity of ECDLP for every $k \in S_t$ is $O(\sqrt{t}\log(q))$,
- 2. $|S| = \varphi(t)$, where $\varphi()$ is a Euler totient function,
- 3. if t is small, then keys in S_t are «weak»,
- checking a «weakness» of k is equal to solving ECDLP and may be applied to standartized elliptic curves,
- if we choose k randomly from Z_q the probability of «weakness» is very small,
- 6. one can construct statistically indistinguishable «weak» keys.

Standardized Elliptic Curves parameters set «A» from RFC 4357

$$p = 2^{256} - 617$$
, $a = -3$, $b = 166$.

1. decomposition of $p - 1 = s \times p_1$, where $\lceil \log_2(p_1) \rceil = 134$ and

 $s = 2 \times 7 \times 43 \times 9109 \times 87640387787 \times$

 $\times \ 16876409960174552741.$

2. decomposition of $q - 1 = t \times q_1$, where $\lceil \log_2(q_1) \rceil = 186$ and

t = 2279774945345390344362 =

 $= 2 \times 3 \times 7 \times 17 \times 37 \times 127 \times 121493 \times 5592900119.$

3. hence exists exactly $t = \sum_{1 \le u \le t, u|t} \varphi(u)$ keys, $2^{70} < t < 2^{71}$, such the complexity of ECDLP's solution for these keys no more than $O(2^{44})$.

Standardized Elliptic Curves parameters set «B» from RFC 4357

$$p = 2^{255} + 3225, \quad a = -3,$$

b=28091019353058090096996979000309560759124368558014865957655842872397301267595.

1. decomposition of p-1 is

$$\begin{split} & p-1 = 2^3 \times 11 \times 33797 \times 633062117 \times 43400749232432159 \times \\ & \times 39607009966486015397 \times 17888439653017795004024467. \end{split}$$

2. decomposition of $q - 1 = t \times q_1$, where $\lceil \log_2(q_1) \rceil = 189$ and

 $t = 94673263789516324202 = 2 \times 47336631894758162101.$

3. hence exists exactly $t = \sum_{1 \le u \le t, u|t} \varphi(u)$ keys, $2^{66} < t < 2^{67}$, such the complexity of ECDLP's solution for these keys no more than $O(2^{42})$.

Standardized Elliptic Curves parameters set «C» from RFC 4357

$$a = -3, \quad b = 32858.$$

 $\mathsf{p} = 70390085352083305199547718019018437841079516630045180471284346843705633502619.$

- 1. decomposition of $p 1 = s \times p_1$, where $\lceil \log_2(p_1) \rceil = 128$ and $s = 2 \times 17 \times 37 \times 113 \times 244997 \times$ $\times 7044765983457327077589232961.$
- 2. decomposition of $q-1 = tq_1$, where $2^{137} < q_1 < 2^{138}$ and

$$\begin{split} t &= 269835642637977294912925317964710600 = 2^3 \times 3^2 \times 5^2 \times \\ &\times 47 \times 207130852417 \times 15398703602419036183. \end{split}$$

3. hence exists exactly $t = \sum_{1 \le u \le t, u|t} \varphi(u)$ keys, $2^{117} < t < 2^{118}$, such the complexity of ECDLP's solution for these keys no more than $O(2^{67})$.

$p = 2^{256} - 617$ (as well as RFC 4357 paramsetA)

$$\begin{split} & a = 87789765485885808793369751294406841171614589925193456909855962166505018127157 \\ & b = 18713751737015403763890503457318596560459867796169830279162511461744901002515. \end{split}$$

Elliptic curve has order m = 4q and $q - 1 = tq_1$, where $2^{242} < q_1 < 2^{243}$ and

 $t = 3194 = 2 \times 1597 \times q_1,$

Hence exists exactly t = 3194 keys, $2^{11} < t < 2^{12}$, such the complexity of ECDLP's solution for these keys no more than $O(2^{14})$.

Note:

p is a safe prime, if p is a prime and $\frac{p-1}{2}$ is a prime.

Definition

E is a strong elliptic curve if conditions from GOST R 34.10 holds and p and q are safe primes.

Note:

It's seems like RSA modulus m where m = pq and p, q are safe primes.

Every strong elliptic curve has «complex multiplication», i.e.

• Let $P, Q \in E$ and $\tau : E \rightarrow E \in End(E)$ endomorphism:

$$\tau(\mathcal{O}) = \mathcal{O}, \quad \tau(\mathbf{P} + \mathbf{Q}) = \tau(\mathbf{P}) + \tau(\mathbf{Q}),$$

• Let $\tau, \mu \in End(E)$. We can define $\tau(P) + \mu(P)$ - addition, $\tau(\mu(P))$ - multiplication \Rightarrow End(E) is a ring,

• End(E) is isomorphic to some order $o_{\mathbb{K}} \subseteq \mathbb{K} = \mathbb{Z}[\sqrt{-\Delta}] \subset \mathbb{Q}(\sqrt{-d})$, $\Delta = \begin{cases} d, & \text{if } d \equiv 1 \pmod{4}, \\ 4h, & \text{if } d \equiv 2, 3 \pmod{4}. \end{cases}$ and d > 1 is square free.

• if P = P(x, y) and $\tau \in o_{\mathbb{K}} = \{1, \omega\}$, then

$$\tau(P) = \left(f(x), \frac{y \cdot f'(x)}{\tau}\right), \text{ where } f(x) = \frac{u(x)}{w(x)},$$

 $u(x), w(x) \in \mathbb{H} = \mathbb{K}(j(\omega)), \text{ deg } u(x) = N(\tau), \text{ and } \tau(P) = [\tau]P$ multiplication on complex number τ .

Definition of Strong Elliptic Curves Additional Condition for Endomorphisms Ring. Part II

ß

- Examples of endomorphisms:
 - $[k]P = P + \cdots + P$,
 - Let P = P(x, y). Frobenius endomorphism is $\phi(P) = (x^p, y^p)$ and $N(\phi) = p$.
- Every $\mathbb{Z}[\sqrt{-\Delta}]$ has finite order h of group of classes of ideals, called «class number» and $[\mathbb{H}:\mathbb{K}] = h$, where $\mathbb{H} = \mathbb{K}(j(\omega))$ Hilbert class field, $\omega \in \mathbb{Z}[-\Delta]$ and j is a modular function.

Definition

E is very strong if

1. the class number of $\mathbb{Z}[\sqrt{-\Delta}]$ should 1 be at least h=200.

Note:

Nowadays we don't know a method of solving ECDLP based on theory of complex multiplication. But we know that construction of $\tau \in o_{\mathbb{K}}$ such $\underline{Q} = \tau(\underline{P}) = [\tau]\underline{P}$ is equivalent to solving ECDLP.

¹Technical Guideline TR-03111. Elliptic curve cryptography. German Federal Office for Information Security. 2007.

Definition

Elliptic curve \hat{E} is a twist of E, $End(E) \subseteq \mathbb{Z}(\sqrt{-\Delta}) \subset \mathbb{Q}(\sqrt{-d})$, if

• $j(\hat{E}) = J(E)$, • $|\hat{E}| = p + 1 - \delta x$, where $4p = x^2 + dy^2$ and

$$|E| = m_{\delta} = p + 1 + \delta x, \quad 0 < x < 2\sqrt{p}, \quad \delta \in \{-1, 1\}.$$

Since $\hat{E} \sim E$ over \mathbb{H} we can hope that ECDLP on E has the same complexity as ECDLP on \hat{E} .

Definition

E is very strong if

2. \hat{E} has order $m_{-\delta} = cr$, $2^{\alpha} < r < 2^{\beta}$ and r is safe prime².

 $^{^2}$ Similar property was introduced by D.Bernstein for Curve25519 — *r* must be prime.

Basic ways to construct:

- 1. construct safe prime p,
- 2. choose one variant from follows:
 - 2.1 generate random or pseudorandom $a, b \in \mathbb{F}_p$ and evaluate |E| with SEA algorithm,
 - 2.2 construct safe q and evaluate a, b with theory of complex multiplication.
 - The first way has property of «provable pseudorandomness» when

 $a \equiv -3 \pmod{p}, \quad b \equiv Hash(\xi) \pmod{p}$

for some ξ and small probability of success.

- We use the second way since he may be described as rigidious algorithm.
- Both ways are exactly deterministic algorithms.

A CM-Theory Algorithm

Step I: Finding appropriate values of p and q for given $0 < \alpha < \beta$

- 1. Consider a sequence $p_n = p_0 12n$, where $p_0 \equiv 11 \pmod{12}$, $p_0 < 2^{\alpha}$ and n = 1, 2, ...
- 2. For every safe prime p_n try to solve Cornaccia's equation

$$4\boldsymbol{p}_n = \boldsymbol{x}^2 + \boldsymbol{d}\boldsymbol{y}^2,$$

for natural x, y > 1 and square free integer $d = 2, 3, 5, 6, \dots, 10^6$ (this value is algorithm parameter).

3. Define $m_{\delta} = p + 1 + \delta x$, $\delta \in \{-1, 1\}$, and check

$$m_{\delta} = cq, \quad 2^{lpha} < q < 2^{eta}, \quad q - {
m safe}.$$

4. Since $\operatorname{ord}_q p|(q-1) = 2q_1$, q_1 - prime, we check only

$$p^2 \not\equiv 1 \pmod{q}$$

for GOST R 34.10-2012 conditions (q_1 or $2q_1$ is a MOV degree).

1. Consider $o_{\mathbb{K}} = \{1, \omega\} \subseteq \mathbb{Z}[\sqrt{-\Delta}]$. Let $\eta(z)$ is Dedekind function and $\mathfrak{f}_1(z)$ is Weber function

$$\eta(z)=q^{24}\prod_{n=1}^\infty(1-q^n),\quad \mathfrak{f}_1(z)=\frac{\eta(2z)}{\eta(z)},\quad \text{where }q=e^{2\pi i z},$$

then modular function j defined by equation

$$j(z) = \frac{(\mathfrak{f}_1(z)^{24} + 16)^3}{\mathfrak{f}_1(z)^{24}}$$

- 2. Since $j(\omega)$ is an algebraic number, deg $j(\omega) = h$ we can construct polynomial $H_d(x) \in \mathbb{Z}[x]$ for which the equality $H_d(j(\omega)) = 0$ holds and deg $H_d(x) = h$.
- 3. Find and sort in ascending order all roots of $H_d(x)$ modulo p.

4. Every root j_p means as *j*-invariant of elliptic curve *E* over \mathbb{F}_p , hence find first *k*, such $-k^{-1}$ is quadratic residue modulo *p*, where

$$k \equiv \frac{j_p}{1728 - j_p} \pmod{p}.$$

5. The coefficients a, b is satisfy to equalities

$$\begin{cases} a \equiv 3ku^2 \equiv -3 \pmod{p}, \\ b \equiv 2ku^3 \pmod{p}, \end{cases}$$

where $u and <math>u^2 \equiv -k^{-1} \pmod{p}$.

6 Since p = 12n + 11 we have $\left(\frac{-1}{p}\right) \equiv -1 \pmod{p}$ then u or -u is non quadratic residue modulo p (one can write $\varepsilon u, \varepsilon \in \{-1, 1\}$) and

$$\hat{a} = -3, \quad \hat{b} \equiv -b \pmod{p}$$

is a coefficients of twist \hat{E} .

7. Using SEA algorithm one can check which curve has order $m_{\delta} = cq$.

- Step I was written by author in C++ code.
- Step II was written by author in Magma like this

```
\mathbb{F}_p := \mathrm{GF}(p);
R < x > := PolynomialRing(\mathbb{F}_p);
fp := R!HilbertClassPolynomial(\Delta);
for i_p in Roots(fp) do
  k := j_p[1] * (F!Modinv(Integers()!(1728 - j_p[1]), p));
  if JacobiSymbol( Integers()!(-k), p) eq 1 then
    c := Modinv( Modsqrt( Integers()!(-k), p ), p);
    ec := EllipticCurve( [K!(3*k*c^2), K!(2*k*c^3)]);
    m := Order(ec);
    if m eq m_{\delta} then
      return true;
    end if:
  end if;
end for:
```

 Dual core IntelCore i5 processor with 4 Gb Memory and some days of calculations. Alexey Nesterenko MIEM HSE

For fixed $\alpha = 254$, $\beta = 256$. We test all integers $p = 2^{256} - t$, where

 $p \equiv 11 \pmod{12}$ and $5 \le t < 100.000.000 = 10^8$.

We found:

- 116014 primes,
- 879 safe primes,
- 22 «strong» elliptic curves,
- 7 elliptic curves, with classs number h > 200,
- 0 very «strong» curves.

$$E: y^2 \equiv x^3 - 3x + 2k\varepsilon u^3 \pmod{p}, \quad p = 2^{256} - t, \quad |E| = m_{\delta},$$

where

•
$$m_{\delta} = p + 1 + \delta x = cq$$
, $4p = x^2 + dy^2$, $2^{254} < q < 2^{256}$,

•
$$k \equiv \frac{J_{p,j}}{1728 - j_{p,i}} \pmod{p}$$
, $j_{p,i} - i$ -th root $H_d(x)$ modulo p ,

•
$$u^2 \equiv -k^{-1} \pmod{p}$$
, deg $H_d = h$, $\delta, \varepsilon \in \{-1, 1\}$.

number	t	d	δ	С	h	_ <i>i</i>	ε	log_2r
4	5460857	640030	-1	2	544	1	1	139
9	34771673	338062	1	2	224	1	-1	58
14	48208517	580907	-1	3	240	1	1	117
16	57688733	760618	1	2	446	2	-1	184
18	63233777	939262	1	2	272	2	1	78
19	78045197	822155	-1	3	308	2	1	88
21	90054089	935518	-1	2	576	2	1	147

where
$$|\hat{E}| = m_{-\delta} = \hat{c}r$$
, r — greater prime

Alexey Nesterenko

Let
$$m_{+1} = p + 1 + x = 2q$$
 and $m_{-1} = p + 1 - x = 2r$, $q > r \Rightarrow$
Question:
How to find $q + r = p + 1$, where p, q, r — safe primes.

No more found for $5 \le q, r < 10^8$:((

Thank You for Attention! Questions?