

Evaluation of the Maximum Productivity for Block Encryption Algorithms

Authors: V.M. Fomichev, <u>A.M. Koreneva</u>,

D.I. Zadorozhniy, A.R. Miftahutdinova

CTCrypt 2018 / Suzdal

Introduction

Block ciphers are used for encryption of large volumes of data. The relevant task is to construct **high-performance block** encryption algorithms based on SP-networks, Feistel networks, on some of its generalizations, etc.

The main factors determining the encryption productivity:

- size of data blocks,
- computational complexity of round implementation,
- number of encryption rounds.

One of the important tasks is to find compromise between cryptographic strength and encryption productivity.

We propose <u>a mathematical idea</u> that allows to increase the encryption productivity, to estimate the number of rounds and to compare block algorithms from a particular class in terms of achieving a certain maximum productivity.

Block algorithms under research

We consider block algorithms based on R(n,r,m) class of autonomous shift register of length n with m feedbacks over the set V_r of all binary vectors of length r (further – R-type algorithms). For example, the class R(2,r,1) is associated with original Feistel network; R(n,r,1) – with GFN-1.

For simplicity, we imply that the register **feedbacks are the same** and implemented by the function $f(x_1,...,x_r)$ for m>1.

Denote by *g* – round transformation based on *R*-type register.

We research the productivity of *R*-type algorithms depending on the following characteristics:

- size of data blocks (the value of *nr*)
- amount of feedbacks (the value of *m*)
- value of exponent of mixing digraph $\Gamma(g)$

The exponent $(\exp\Gamma(g))$ – the smallest positive integer *t* such that $M(g)^t > 0$, where M(g) is an adjacency matrix associated with $\Gamma(g)$.

Theoretical evaluation of productivity (1)

Notation:

 $\tau(f)$ – time (in *sec*) of calculating the value of the function $f(x_1,...,x_r)$ (we assume that the time is the same regardless of the input);

 $\pi(n,r,m,h)$ – productivity of *h*-round *R*-type algorithm (in *bits per second*);

v(g,n,r,m) – maximum productivity of *R*-type algorithm with the round transformation *g*.

Proposition 1. If the time of implementation for the shift of blocks is substantially less than $\tau(f)$, then

$\pi(n,r,m,h) \approx nr/hm\tau(f).$

Proposition 2. The following is correct:

 $v(n,r,m,g) \approx nr/h_0m\tau(f),$

where $h_0 = \exp\Gamma(g) + \exp\Gamma(g^{-1}) - 1$.

Theoretical evaluation of productivity (2)

The mixing digraph $\Gamma(g)$ has *nr* vertices (in practical cases, at least 64 and can reach 1024 or more).

For large values of *nr* (for example, if $n \ge 8$ and $r \ge 32$) it is convenient to consider **the block mixing digraph** $\Gamma_B(g)$ with *n* vertices ($2 \le n \le 32$ in our cases).

In accordance with the definition, $\exp\Gamma_B(g) \leq \exp\Gamma(g)$ and these values are close in many cases.

Hence, the upper bound for the maximum encryption productivity of *R*-type algorithm:

 $v(n,r,m,g) \leq nr/h_b m\tau(f),$

where $h_b = \exp\Gamma_B(g) + \exp\Gamma_B(g^{-1}) - 1$.

Theoretical evaluation of productivity (3)

The maximum encryption productivity of R-type algorithms **depends on the characteristics** of the round transformation g.

So the relevant problem is to describe *R*-type shift registers in terms of achieving a certain maximum productivity.

Important tasks in this context are as follows:

- choice of the feedback function with the relatively small value of τ(f);
- determination of the ratio of *n* and *m*, such that the value of h₀m is the least.

Classes of algorithms under research (1)

We considered 5 classes of *R*-type algorithms:

R(8,32,3), *R*(15,32,5), *R*(16,32,5), *R*(30,32,9) and *R*(32,32,9).

Further we use the following notation:

R(8,32,3) - 256-3, R(15,32,5) - 480-5, R(16,32,5) - 512-5, R(30,32,9) - 960-9,R(32,32,9) - 1024-9.

The round transformation *g* should provide (in the context of our research) the following properties:

- bijectivity,
- nonlinearity of all the coordinate functions,
- the smallest (or close to) value of $\exp \Gamma(g)$.

Determination of functions

Round transformation g is the register transformation over the set V_{32*n} with the same feedback functions:

$f(S, q_j) \boxplus X_k,$

where \square – addition modulo 2^{32} ,

S – sum modulo 2^{32} of the some subblocks of the input block $X=(X_1,\ldots,X_n)$,

- X_k subblock, $k \in \{1, ..., n\}$,
- q_j round key, $1 \leq j \leq m$.

The function *f* is similar to the function of GOST 28147-89:

$$f(S, q_j) = T^{11}(sbox_{8,4}(S \boxplus q_j)),$$
 (1)

where $T^{11} - 11$ -bit circular shift towards most significant bits, $sbox_{8,4} - 8$ s-boxes of size 4x4 of GOST 28147-89.

Round of the 256-3 algorithm

Estimation the number of rounds by h_b

Block mixing digraphs $\Gamma_B(g)$ and $\Gamma_B(g^{-1})$ of the 256-3 algorithm

Bold arrows (i,S) indicate that the subblock X_i is used to calculate the sum $S \pmod{2^{32}}$; arrows (S,j) indicate that the sum $S \pmod{2^{32}}$ is used to calculate X_i , $0 \le i, j \le 7$.

Thus, an **arc in block mixing digraph** is either a simple arrow (not bold), or a concatenation of the **bold** arrow with a simple arrow.

For example, the shortest path from 0 to 0 is the path (0,7,1,0) of length 3.

Round of the 480-5 algorithm

Estimation the number of rounds by h_b

Block mixing digraphs $\Gamma_B(g)$ and $\Gamma_B(g^{-1})$ of the 480-5 algorithm

$$\exp\Gamma_B(g) = \exp\Gamma_B(g^{-1}) = 5,$$

$$h_b = 9.$$

Experimental evaluation of encryption productivity

Our assumptions:

- The evaluation of productivity is given in comparison with GOST 28147-89
- We use only ECB-mode for encryption of the same plaintext of length T = 21120 bytes
- The time τ(f) of computation of the value of the function f(x₁,...,x_r) is estimated by the value of 0.001 seconds for each considered algorithm (256-3, 480-5, 512-5, 960-9, 1024-9)
- For all algorithms except GOST 28147-89, we assumed that each bit of the round key depends on all bits of the encryption key

Evaluation of productivity

Algorithm	Number of rounds, <i>h_b</i>	Theoretically gain in productivity, <i>number of times</i>	Practically gain in productivity, <i>number of times</i>
GOST	17	1	1
28147-89			
256-3	7	3,238	3,635
480-5	7	3,643	4,008
512-5	9	3,022	3,444
960-9	9	3,148	3,522
1024-9	9	3,358	3,956

We obtain (experimentally) that the **encryption productivity is close to the maximum** when the number *m* of feedback functions is defined by the equation:

$$m = \lceil n/4 \rceil + 1.$$

The 480-5 algorithm has the highest maximum productivity.

Conclusion

- We proposed a characteristic for estimation of the maximum performance of block encryption algorithms, that can be used to determine the parameters for *R*-type block encryption algorithms.
- We determined the most productive algorithm in the class under research: the algorithm based on the shift register of length 15 with 5 feedbacks over V_{32} .

The obtained estimations show that with increasing the input block size up to 1024 bits (the number of feedbacks of high-performance algorithms grows more slowly, reaching 9), **the maximum encryption performance grows, but slower than the block size.**

Thank you!

email: a.koreneva@securitycode.ru