Basic	concepts
0000	

The key recovering method

Characteristics of the method $_{\rm OOOO}$

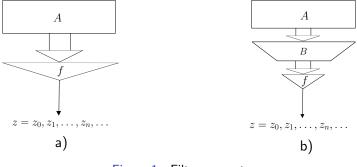
Preliminary stage

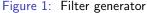
On the construction of generalized approximations for one filter generator key recovery method

Alekseev E.K.¹, Kushchinskaya L.A.²

¹CryptoPro LCC, ²Lomonosov Moscow State University

June 7, 2017





▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Filter generator is a construction built on the basis of linear mapping $A: V_n \to V_n$ and the Boolean function $f \in \mathcal{F}_n$ (see fig. 1a).

Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
00000			
Examples of attacks			

- Correlation method proposed by T. Siegenthaler
- Fast correlation attack proposed by W. Meier and O. Staffelbach
- Algebraic attacks proposed by N. Courtois and W. Meier

Basic concepts ○○●○○○	The key recovering method	Characteristics of the method	Preliminary stage
Trajectory			

Definition

For a filter generator, the *trajectory* will refer to the three values $\operatorname{Traj} = \langle m, \mathbb{L}, \mathbb{T} \rangle$, where $m \in \mathbb{N}$ is the length of the trajectory, $\mathbb{L} = \{L_i - \text{is a plane in } V_n | i = \overline{1, m}\},$ $\mathbb{T} = \{t_i | t_i \in \mathbb{Z}, i = \overline{1, m}; t_1 = 0\},$ such that

$$L_i = A^{t_i - t_{i-1}}(L_{i-1}), \ t_i, t_{i-1} \in \mathbb{T}, i = \overline{2, m}.$$

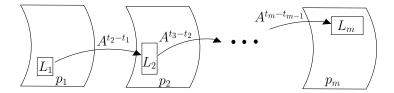
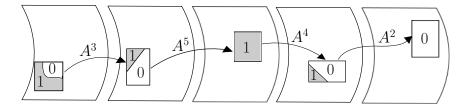
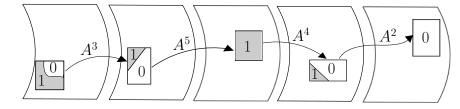


Figure 2: Trajectory

Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
000000			
Trajectory			



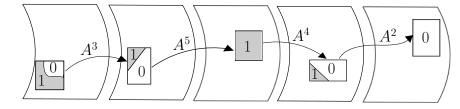
Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
000000			
Trajectory			



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• z = 00101100010110000... - reject

Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
000000			
Trajectory			



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- z = 00101100010110000... reject
- z = 10101100010100000... accept

Basic concepts ○○○○●○	The key recovering method	Characteristics of the method	Preliminary stage 0000000000000000
Characteristic of trajecto	y		

Definition

The characteristic of trajectory $\text{Traj} = \langle m, \mathbb{L}, \mathbb{T} \rangle$ is a pair of sets (\mathbb{P}, C) , where $\mathbb{P} = \{p_i | p_i \in (\frac{1}{2}; 1], i = \overline{1, m}\}, C = \{c_i | c_i \in \mathbb{F}_2, i = \overline{1, m}\}, p_i$ is the probability that the value of the filter function f is the same as constant c_i in plane $L_i, i = \overline{1, m}$, provided that vector $v \in L_i$ is picked randomly with each value having the same probability of being selected.

Basic concepts ○○○○○●	The key recovering method	Characteristics of the method	Preliminary stage 0000000000000000
Generalized approximatio	n		

Definition

The set of all the trajectories $\{\text{Traj}^{(i)}\}\$ will then be referred to as *the generalized approximation* of filter function $f \in \mathcal{F}_n$ in the generator with linear mapping A.

Definition

The starting set \mathbb{L}_{start} of the generalized approximation is the collection of sets $\{L_1^{(i)}\}$ from each trajectory.

- ロ ト - 4 回 ト - 4 □ - 4

Basic concepts

The key recovering method

 $\begin{array}{c} \text{Characteristics of the method} \\ \text{0000} \end{array}$

Preliminary stage

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

$$z_i = f(A^i u^*), \ i = \overline{0, N-1}.$$

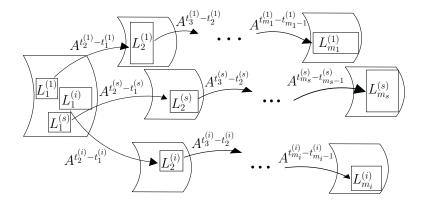


Figure 3: Generalized approximation

Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
000000	○●○○○		000000000000000

Lets build a vector

$$w = (c_1 \oplus \widetilde{z}_1, \ldots, c_m \oplus \widetilde{z}_m), \ \widetilde{z}_i = z_{t_i}, \ i = \overline{1, m}.$$

for each trajecrory from the generalized approximation. Lets assume that there is some deciding rule of the form $F(L) \ge 0$, that allows us to accept or reject the trajectory Traj (plane $L \in \mathbb{L}_{start}$).

The key recovering method

 $\begin{array}{c} \text{Characteristics of the method} \\ \text{0000} \end{array}$

Preliminary stage

Description of the algorithm

Let
$$\hat{L} = \mathbb{L}_{start}$$
, $M = V_n \setminus ig(igcup_{L \in \mathbb{L}_{start}} L ig)$.

- 1 Stage one (selecting the 'correct' trajectories). $\widetilde{L}:=\emptyset.$
 - 1.a) If $\hat{L} = \emptyset$, then go to stage two. Otherwise select a random element $L_1^{(i)}$ from the set \hat{L} ; $\hat{L} := \hat{L} \setminus \{L_1^{(i)}\}$.
 - 1.b) Build vector $w \in V_{m_i}$. If the inequality $F(L_1^{(i)}) \ge 0$ holds, then assume $\widetilde{L} := \widetilde{L} \cup \{L_1^{(i)}\}$. Go to step 1.a).

The key recovering method $\circ \circ \circ \circ \circ$

 $\begin{array}{c} \text{Characteristics of the method} \\ \text{0000} \end{array}$

Preliminary stage

Description of the algorithm

- 2 Stage two (thorough testing of the 'correct' trajectories).
 - 2.a) If $\widetilde{L} = \emptyset$, then go to stage three, else select Y from set \widetilde{L} ; $\widetilde{L} := \widetilde{L} \setminus \{Y\}.$
 - 2.b) If $Y = \emptyset$, then go to step 2.a). Otherwise select $v \in Y$; $Y := Y \setminus \{v\}.$
 - 2.c) If $f(A^i v) = z_i$ for any $i = \overline{0, N-1}$, then return v and stop, otherwise go to step 2.b).

Basic concepts 000000 The key recovering method $\circ\circ\circ\circ\circ$

 $\begin{array}{c} \text{Characteristics of the method} \\ \text{0000} \end{array}$

Preliminary stage

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Description of the algorithm

- 3 Stage three (viewing set M).
 - 3.a) If $M = \emptyset$, then quit without returning anything, otherwise select $u \in M$; $M := M \setminus \{u\}$.
 - 3.b) If $f(A^{i}u) = z_{i}$ for any $i = \overline{0, N-1}$, then return u as the result and exit, otherwise go to 3.a).

Basic	concepts
0000	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The general characteristics of the method are proved in *E.K.Alekseev, L.A.Kushchinskaya.* Generalizing one method for recovering the key of a filter generator. Discrete Mathematics and Applications, 2017, forthcoming. (In Russian).

Basic concepts 000000	The key recovering method	Characteristics of the method ●○○○	Preliminary stage 000000000000000
Reliability			

- α is the probability to accept "false" plane (the method laboriousness);
- β is the probability to reject "true" plane (the method reliability).

Theorem

Lets assume $Pr[u^* = v] = \frac{1}{2^n}, \forall v \in V_n$. The method reliability satisfies the following inequality

$$\pi \ge 1 - \frac{1}{2^n} \sum_{j=1}^s \beta_j \cdot |L_1^{(j)}|.$$

Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
000000		○●○○	000000000000000
Laboriousness			

Planes from \mathbb{L}_{start} do not intersect with each other.

Theorem Let $C = \sum_{j=1}^{s} |L_1^{(j)}| \cdot \alpha_j$. The method laboriousness is equal to $s + C + \frac{|M|}{2^n} \left(\frac{|M|+1}{2} + \sum_{i=1}^{s} |L_1^{(i)}| \cdot \beta_i \right) + \frac{1}{2^n} \sum_{i=1}^{s} |L_1^{(i)}|^2 \cdot (1 - \alpha_i - \beta_i).$

Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
000000		○○●○	0000000000000000
Laboriousness			

Planes from \mathbb{L}_{start} do not intersect with each other and $\bigcup_{L \in \mathbb{L}_{start}} L = V_n$, while $dim(L) = k, \forall L \in \mathbb{L}_{start}$. The method laboriousness is equal to

$$D = 2^{n-k} + 2^n \cdot \alpha + 2^k \cdot (1 - \alpha - \beta).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
000000		○○○●	000000000000000
Laboriousness			

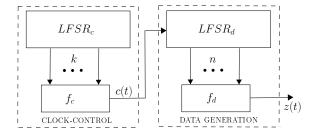


Figure 4: LILI-128

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- DATA GENERATION: $2^{89} \rightarrow 2^{76}$
- CLOCK-CONTROL: $2^{39} \rightarrow 2^{23}$
- LILI-128: $2^{128} \rightarrow 2^{118}$

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage ●○○○○○○○○○○○○○

What do we need?

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage

What do we need?

• Laboriousness Q

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What do we need?

- Laboriousness Q
- Reliability π_0

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage

What do we need?

- Laboriousness Q
- Reliability π_0
- The minimal possible amount of the generators output

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage ○●0○○○○○○○○○○○○
Description of the metho	d		

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
000000	00000	0000	000000000000000000000000000000000000000
Description of the method			

Parameter k ∈ {1, 2, ..., n − 1} is the number of dimensions for the plane in the trajectory, N = 2^k.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage
Description of the metho	d		

- Parameter k ∈ {1, 2, ..., n − 1} is the number of dimensions for the plane in the trajectory, N = 2^k.
- Parameter $\delta \in \{1, 2, ..., N\}$ will be responsible for the minimal predominance of some constant in the plane. Then $T_0 = \frac{N}{2} \frac{\delta}{2}$ is the boundary for the number of zero values and $T_1 = \frac{N}{2} + \frac{\delta}{2}$ is the boundary for ones.

Description of the method	Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage
	Description of the me	thod		

Select a random plane L_0 with k dimensions. For each i = 0, 1, 2, ...:

• If in plane L_i filter function f equals 1 a certain number of times different than N/2 by a large enough value then we add it to the trajectory were constructing.

•
$$L_{i+1} := A(L_i)$$
.

• Repeat the steps above until weve achieved the desired length of the trajectory.

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage
Mathematical model			

• Lets assume that plane L_i is selected randomly and independently from the another.

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage
Mathematical model			

- Lets assume that plane L_i is selected randomly and independently from the another.
- The predominance in accuracy equals $1/2 + \delta/2N$.

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage
Mathematical model			

- Lets assume that plane L_i is selected randomly and independently from the another.
- The predominance in accuracy equals $1/2 + \delta/2N$.
- Let $p(\delta, k)$ be the probability that a random plane gets selected for the trajectory, let N_1 be the length of the trajectory, $N_2 = \frac{N_1}{p(\delta,k)}$.

(日) (同) (三) (三) (三) (○) (○)

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage ○○○○●○○○○○○○○○
Problem			

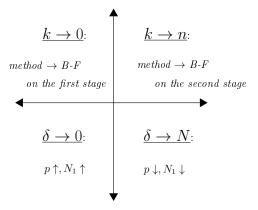


Figure 5: Just B-F?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage
Characteristics of the me	thod		

• L is a random set of vectors from V_n with a capacity of 2^k .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

•
$$S_N = \sum_{v \in L} f(v)$$
. $S_N \sim HG(2^{n-1}, 2^n, 2^k)$.

•
$$S_N \approx Bin(N, \frac{1}{2}) \Rightarrow S_N \approx N(\frac{N}{2}, \frac{N}{4}).$$

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage
Characteristics of the me	thod		

The following expression holds

$$\Pr[T_0 \leq S_N \leq T_1] = 2\Phi\left(\frac{\delta}{\sqrt{N}}\right) - 1,$$

where $\Phi(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-\frac{x^2}{2}} dx$ is a distribution function for a normally distributed random value. From this derive the following

$$p(\delta, k) = 1 - Pr[T_0 \leq S_N \leq T_1] = 2\left(1 - \Phi\left(\frac{\delta}{\sqrt{N}}\right)\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage
Characteristics of the me	thod		

•
$$\beta = 1 - \pi_0$$
 is the probability of second type errors.

•
$$Q = 2^{n-k} + \alpha \cdot 2^{n-k} \cdot 2^k + (1-\beta) \cdot 2^k \Rightarrow$$

 $\alpha = 2^{-n} \cdot (Q - 2^{n-k} - \pi_0 \cdot 2^k).$

$$N_1 pprox rac{(u_lpha \sqrt{q_0(1-q_0)}+u_eta \sqrt{q_1(1-q_1)})^2}{(q_1-q_0)^2},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where u_{α}, u_{β} are the quantiles of a standard normal distribution, $q_0 = \frac{1}{2}$, $q_1 = \frac{1}{2} + \frac{\delta}{2N}$.

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage ○○○○○○○●○○○○○○
Characteristics of the method			

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

•
$$N_2 = \frac{N_1}{p(\delta,k)} \approx \frac{\left(u_{\alpha} + u_{\beta} \cdot \sqrt{1 - \left(\frac{\delta}{N}\right)^2}\right)^2 \cdot \left(\frac{N}{\delta}\right)^2}{2\left(1 - \Phi\left(\frac{\delta}{\sqrt{N}}\right)\right)}$$

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage
Characteristics of the method			

•
$$N_2 = \frac{N_1}{p(\delta,k)} \approx \frac{\left(u_{\alpha} + u_{\beta} \cdot \sqrt{1 - \left(\frac{\delta}{N}\right)^2}\right)^2 \cdot \left(\frac{N}{\delta}\right)^2}{2\left(1 - \Phi\left(\frac{\delta}{\sqrt{N}}\right)\right)}$$

• Let $t = \delta/\sqrt{N}, t \in (0; \sqrt{N}]$:

$$N_2 pprox rac{N}{2} \cdot \left(u_lpha + u_eta \sqrt{1 - rac{t^2}{N}}
ight)^2 \cdot rac{1}{t^2(1 - \Phi(t))}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage
Characteristics of the me	thod		

• $Q \ll 2^n$ and $\alpha \ll \beta$ $(u_\alpha \gg u_\beta)$. Then $N_2 \approx \frac{N}{2} \cdot u_\alpha^2 \cdot \frac{1}{t^2(1-\Phi(t))}$.

Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
			000000000000000000000000000000000000000
Characteristics of the me	ethod		

•
$$Q \ll 2^n$$
 and $\alpha \ll \beta$ $(u_\alpha \gg u_\beta)$. Then $N_2 \approx \frac{N}{2} \cdot u_\alpha^2 \cdot \frac{1}{t^2(1-\Phi(t))}$.
• $f(t) = t^2(1-\Phi(t)) \rightarrow \text{maximum}, t \in (0; \sqrt{N}].$ $f'(t) = 0$:

$$2(1-\Phi(t))=t\cdot\frac{1}{\sqrt{2\pi}}\cdot e^{-\frac{t^2}{2}},$$

which is equivalent to

$$rac{t}{2}=rac{1-\Phi(t)}{arphi(t)},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where
$$\varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$$
.

Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
			000000000000000000000000000000000000000
Characteristics of the met	hod		

•
$$R(t) = \frac{1-\Phi(t)}{\varphi(t)}$$
 is known as the Mills ratio.

• The equation $\frac{t}{2} = \frac{1-\Phi(t)}{\varphi(t)}$ has just one solution

•
$$t_0 = 1.19061...$$

• Thus, $\delta \approx \lceil t_0 \cdot \sqrt{N} \rceil$. Value N_2 in the minimum:

$$N_2 \approx \frac{N}{2} \cdot u_{\alpha}^2 \cdot C_{\Phi},$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where
$$C_{\Phi} = \frac{1}{t_0^2(1-\Phi(t_0))} \approx 6.03442.$$

Basic concepts	The key recovering method	Characteristics of the method	Preliminary stage
			000000000000000000000000000000000000000
Characteristics of the me	ethod		

- $u_{\alpha} \approx \sqrt{-\ln(2\pi\alpha^2)}$ for small $\alpha \Rightarrow N_2$ reaches the minimum at the minimal possible k.
- $k \in \{1, 2, \dots, n-1\}$: $\alpha = 2^{-n} \cdot (Q 2^{n-k} \pi_0 \cdot 2^k) > 0$
- Minimal k:

$$k = \left\lceil \log_2\left(\frac{Q - \sqrt{Q^2 - \pi_0 2^{n+2}}}{2\pi_0}\right)\right\rceil.$$

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage ○○○○○○○○○○○○●○○
Characteristics of the met	thod		

The values of the functions in the minimum are as follows:

•
$$N_1 = (u_{\alpha})^2 \cdot \left(\frac{N}{\delta}\right)^2 = \left(\frac{u_{\alpha}}{t_0}\right)^2 \cdot N$$
,
• $N_2 = \left(\frac{u_{\alpha}}{t_0}\right)^2 \cdot \frac{N}{2} \cdot C_{\Phi} = N_1 \cdot \frac{C_{\Phi}}{2}$;

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage ○○○○○○○○○○○○○
Characteristics of the me	thod		

•
$$n = 128$$
, $\pi_0 = 1/2$

Method characteristics

	k	δ	N_1	N ₂
$Q = 2^{70}$	59	2 ³⁰	2 ⁶⁵	2 ⁶⁷
$Q = 2^{80}$	49	2 ²⁵	2 ⁵⁴	2 ⁵⁶
$Q = 2^{90}$	39	2 ²⁰	2 ²⁵	2 ²⁷

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Basic concepts 000000	The key recovering method	Characteristics of the method	Preliminary stage ○○○○○○○○○○○○○
Characteristics of the me	thod		

•
$$n = 128$$
, $\pi_0 = 1/2$

Method characteristics

	k	δ	N_1	<i>N</i> ₂
$Q = 2^{70}$	59	2 ³⁰	2 ⁶⁵	2 ⁶⁷
$Q = 2^{80}$	49	2 ²⁵	2 ⁵⁴	2 ⁵⁶
$Q = 2^{90}$	39	2 ²⁰	2 ²⁵	2 ²⁷

• Experimental verification n = 32, $Q = 2^{24}$, $\pi_0 = 1/2$ Expected: $N_2 = 12861$, obtained: $N_2 = 12910$.

Basic	concepts
0000	

Thank you for your attention.

alekseev@cryptopro.ru lyudmila.kuschinskaja@yandex.ru

