On construction of correlation-immune functions via minimal functions

Karelina E. K. Alekseev E. K. Logachev O. A. Infotecs JSC CryptoPro LLC ISI MSU

ション ふゆ く 山 マ チャット しょうくしゃ

2017

Examples of the cryptographic properties of Boolean functions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- 1. Nonlinearity
- 2. Algebraic immunity
- 3. Nondegeneracy
- 4. Correlation immunity

1. Brute-force search method

The search of functions in the sets which a priori possess a positive set of properties:

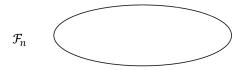
- Maiorana-McFarland class
- \mathcal{PS} class

2. Recursive method

 $f_1 \in \mathcal{F}_n \longrightarrow f_2 \in \mathcal{F}_{n+1} \longrightarrow f_3 \in \mathcal{F}_{n+2} \longrightarrow \dots \longrightarrow f_{m-1} \in \mathcal{F}_{n+m-1} \longrightarrow f_m \in \mathcal{F}_{n+m}$

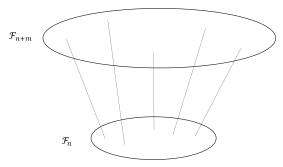
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

- 1. Method of functions construction with the specified order of correlation immunity based on a combination of the above-stated approaches
 - The construction of a base set

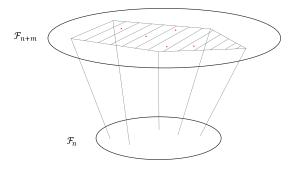


・ロト ・四ト ・ヨト ・ヨト ・ヨ

- 1. Method of functions construction with the specified order of correlation immunity based on a combination of the above-stated approaches
 - The construction of a base set
 - Recursive method



- 1. Method of functions construction with the specified order of correlation immunity based on a combination of the above-stated approaches
 - The construction of a base set
 - Recursive method
 - Search for functions in the target dimension



2. Study of «neighbourhoods» of the already known functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Basic concepts and notations

- Let \mathbb{F}_2 be the finite field of 2 elements. $\forall n \in \mathbb{N} \ V_n = (\mathbb{F}_2 \times \ldots \times \mathbb{F}_2) = \mathbb{F}_2^n$. $V_n^* = V_n \setminus \{0^n\}$, where $0^n = (0, \ldots, 0) \in V_n$.
- Boolean function of *n* variables is the correspondence from V_n into F₂. Constant Boolean functions are denoted as 1 and 0. The set of all Boolean functions is denoted as F_n.

ション ふゆ く 山 マ チャット しょうくしゃ

 The support 1_f of a Boolean function f ∈ F_n is a set 1_f = { x ∈ V_n | f(x) = 1 }. The weight wt (f) of a Boolean function f ∈ F_n is a cardinality of the support. The distance dist (f, g) between f ∈ F_n and g ∈ F_n is value of wt (f ⊕ g).

Basic concepts and notations

- The algebraic degree deg (f) of a Boolean function f ∈ F_n of n variables is the number of variables in the longest term ANF (Zhegalkin polynomial).
- For u ∈ V_n a Boolean function l_u denotes a linear Boolean function l_u(x) = ⟨u, x⟩, where ⟨u, x⟩ = ⊕_{i=1}ⁿ u_i · x_i is a scalar product of vectors u and x. The set {l_u(x) ⊕ b|u ∈ V_n, b ∈ 𝔽₂} of affine Boolean functions of n variables is denoted as A_n.
- Nonlinearity nl(f) of a Boolean function f ∈ F_n is the Hamming distance to the set of all affine functions A_n:

$$\operatorname{nl}(f) = \operatorname{dist}(f, \mathcal{A}_n) = \min_{l \in \mathcal{A}_n} \operatorname{dist}(f, l).$$

(日) (伊) (日) (日) (日) (0) (0)

Basic concepts and notations

• $f \in \mathcal{F}_n$ is correlation-immune of order m, $1 \leq m \leq n$ (further CI-function), if the following equality $\operatorname{wt} \left(f'\right) = \frac{\operatorname{wt}(f)}{2^m}$ holds for any subfunction f' of n - m variables.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $cor(f) = max\{m \in \mathbb{N} \mid f - correlation \text{ immune of order } m\}$.

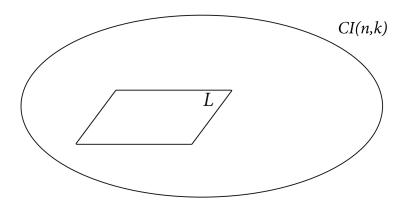
•
$$\operatorname{CI}(n,k) = \{f \in \mathcal{F}_n | \operatorname{cor}(f) \ge k\}$$

 $\operatorname{CI}(n) = \operatorname{CI}(n,1)$

- The balanced function $f \in \mathcal{F}_n$ is k-resilient, if $cor(f) \ge k$.
- The Walsh-Hadamard transform of a Boolean function f ∈ F_n is an integral function W_f : V_n → Z, W_f(u) = ∑_{x∈V_n}(-1)<sup>f(x)⊕⟨u,x⟩.
 </sup>
- $f \in \mathcal{F}_n$ is correlation-immune function of *m* order, $0 < m \le n$, $\Leftrightarrow \forall u \in V_n : 1 \le \operatorname{wt}(u) \le m$, the equality $W_f(u) = 0$ performs.
- Functions f, g ∈ CI(n, k) such that f ⋅ g = 0 are called orthogonal. Let f, g ∈ CI(n, k) be orthogonal then f ⊕ g ∈ CI(n, k).

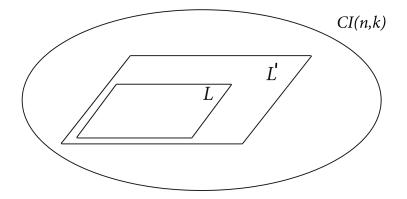
Minimal correlation-immune functions

L — linear space, $L \subset CI(n, k)$. $f_1, \ldots, f_r \in CI(n, k)$ — basis L, which consist of mutually orthogonal functions.



Minimal correlation-immune functions

Could we expand L to L' such that $L \subset L' \subset CI(n, k)$?



・ロト ・ 日 ・ モート ・ 田 ・ うへで

Minimal correlation-immune functions

Expand basis:

$$g = \mathbf{1} \oplus f_1 \oplus \ldots \oplus f_r \in Cl(n,k), \forall i \in [1,r] g \cdot f_i = \mathbf{0}.$$

Q Let's decompose existing functions f_i into a sum of mutually orthogonal functions f'_i, f''_i ∈ CI(n, k) for all i ∈ [1, r].

ション ふゆ アメリア メリア しょうくの

Functions $f \in CI(n, k)$, which can't be represented as a sum of orthogonal functions $f', f'' \in CI(n, k)$, will be called *k-minimal correlation-immune functions* (*k*-minimal for short).

(日) (伊) (日) (日) (日) (0) (0)

MCI(n, k) — a set of k-minimal functions of n variables.

The truth table of function $f \in \mathcal{F}_n$ is called the matrix T_f of order $\operatorname{wt}(f) \times n$, the rows of this matrix are vectors from 1_f lexicographically-ordered.

For example, for function $f(x_1, x_2, x_3) = x_1x_2 \oplus x_3 \in \mathcal{F}_3$

$$T_f = egin{pmatrix} 0 & 0 & 1 \ 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{pmatrix}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Let be $\mathcal{F}_n^w = \{f \in \mathcal{F}_n | \text{wt}(f) = w\}$. For any $w \in \{1, \ldots, 2^n\}$ define the map $AC^{(w)}$:

$$\mathrm{AC}^{(w)}:\mathcal{F}_n^w\times V_w\times\{1,\ldots,n+1\}\mapsto\mathcal{F}_{n+1}^w$$

The function $g = AC_{v,i}^{(w)}(f) = AC^{(w)}(f, v, i)$ is defined as follows. The matrix $wt(f) \times (n+1)$ is formed by adding vector v of dimension w in the truth table T_f as *i*-th column. Whereas *i*-th and the following columns T_f are shifted to the right. The rows of formed matrix is support of function g. If i = n + 1, then the column is added to the end of the table.

 $g(x_1, x_2, x_3, x_4, x_5) = AC_{\nu,5}^{(4)}(f)$, where $\nu = (1010)$

Theorem

Let $f \in CI(n)$ and w = wt(f). Then for any $v \in V_w$, such that wt(v) = w/2, and for any $i \in \{1, ..., n+1\}$ the following is true $g = AC_{v,i}^{(w)}(f) \in CI(n+1)$.

Theorem

Let $f \in MCI(n, 1)$ and w = wt(f). Then for any $v \in V_w$, such that wt(v) = w/2, and for any $i \in \{1, ..., n+1\}$ the following is true $g = AC_{v,i}^{(w)}(f) \in MCI(n+1, 1)$.

- $L \subset CI(n, k)$ a linear space
- *f*₁,..., *f*_r ∈ CI(*n*, *k*) − basis of mutually orthogonal functions

・ロト ・ 日 ・ モート ・ 田 ・ うへで

The search of a (k + m)-resilient function $g \in L$:

•
$$\operatorname{cor}(g) \ge k + m, \ m \ge 1$$

•
$$wt(g) = 2^{n-1}$$

For any u, wt(u) > 0, and for any

$$g = b_1 \cdot f_1 \oplus \ldots \oplus b_r \cdot f_r, b_1, \ldots, b_r \in \mathbb{F}_2,$$

the following equality holds:

$$W_g(u) = b_1 \cdot W_{f_1}(u) + \ldots + b_r \cdot W_{f_r}(u)$$

• g — Cl-function of (k + m)-th order \Leftrightarrow for any u, $1 \leq \operatorname{wt}(u) \leq k + m$, the equality $W_g(u) = 0$ is true.

•
$$f_i \in \operatorname{CI}(n,k) \Rightarrow W_{f_i}(u) = 0$$
 for any $u: 1 \leq \operatorname{wt}(u) \leq k$.

So the function g — Cl-function with $\operatorname{cor}(g) \ge k + m \Leftrightarrow$ for all $u, k + 1 \le \operatorname{wt}(u) \le k + m, \binom{n}{k+1} + \ldots + \binom{n}{k+m}$ equations are true:

$$b_1 \cdot W_{f_1}(u) + \ldots + b_r \cdot W_{f_r}(u) = 0$$

The condition $\operatorname{wt}(g) = 2^{n-1}$ is true if the following equality is true:

$$b_1 \cdot \operatorname{wt}(f_1) + \ldots + b_r \cdot \operatorname{wt}(f_r) = 2^{n-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In order to find (k + m)-resilient function $g \in L$ it is sufficient to find (0, 1)-solutions (b_1, \ldots, b_r) of the system of $\binom{n}{k+1} + \ldots + \binom{n}{k+m} + 1$ linear equations

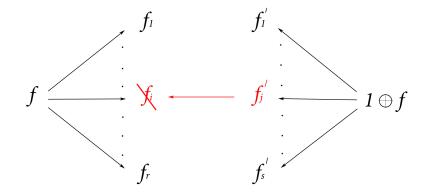
$$\begin{cases} b_1 \cdot W_{f_1}(u) + \ldots + b_r \cdot W_{f_r}(u) = 0, \text{ for } u : k+1 \leqslant \operatorname{wt}(u) \leqslant k + m \\ b_1 \cdot \operatorname{wt}(f_1) + \ldots + b_r \cdot \operatorname{wt}(f_r) = 2^{n-1} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Analysis of «neighbourhoods» of known functions

- $f \in CI(n, k)$, $f = f_1 \oplus \ldots \oplus f_r$, where f_i mutually orthogonal functions
- $f \oplus \mathbf{1} \in \operatorname{CI}(n, k), f \oplus \mathbf{1} = f_1' \oplus \ldots \oplus f_s'$, where f_i' mutually orthogonal functions

Analysis of «neighbourhoods» of known functions



The results of applying the proposed methods

Consider the function $f_T \in \mathcal{F}_{10}$:

 $\operatorname{wt}(f_T) = 512 | \operatorname{cor}(f_T) = 6 | \operatorname{deg}(f_T) = 3 | \operatorname{nl}(f_T) = 384 | \operatorname{nd}(f_T) = 0$

Functions f_T and $f_T \oplus \mathbf{1}$ were decomposed on 128 1-minimal functions with the weight 4. The main disadvantage of f_T : $nd(f_T) = 0$.

The new function g_T has the following parameters:

wt $(g_T) = 512$ | cor $(g_T) = 2$ | deg $(g_T) = 7$ | nl $(g_T) = 360$ | nd $(g_T) = 8$

The results of applying the proposed methods

The filter function f_c is used in stream cipher LILI128. This function of 10 variables has the following parameters:

$$\operatorname{wt}(f_c) = 512 | \operatorname{cor}(f_c) = 3 | \operatorname{deg}(f_c) = 6 | \operatorname{nl}(f_c) = 480 | \operatorname{nd}(f_c) = 80$$

The new function g_c is constructed with the following parameters:

$$\operatorname{wt}(g_c) = 512 | \operatorname{cor}(g_c) = 3 | \operatorname{deg}(g_c) = 6 | \operatorname{nl}(g_c) = 480 | \operatorname{nd}(g_c) = 112$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The results of applying the proposed methods

The example of function construction without the use of known «good» functions:

•
$$f = f_1 \oplus \ldots \oplus f_{256} \in CI(10,7)$$

• $f_i \in MCI(10, 1), wt(f_i) = 2, i \in [1, 256]$

$$\operatorname{wt}(f) = 512 | \operatorname{cor}(f) = 7 | \operatorname{deg}(f) = 2 | \operatorname{nl}(f) = 256 | \operatorname{nd}(f) = 0$$

This function is 7-resilient function and it achieves the upper bound for nonlinearity.

Thanks for your attention!

alekseev@cryptopro.ru Ekaterina.Karelina@infotecs.ru logol@iisi.msu.ru

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Nondegeneracy

- $A (n \times k)$ -matrix over \mathbb{F}_2
- $f \in \mathcal{F}_k$
- $f^A \in \mathcal{F}_n, f^A(x) = f(xA)$
- The order of algebraic degeneracy AD (f) of f ∈ F_n is the maximum possible value of (n − k), where the integer k, 0 ≤ k ≤ n such that a function g ∈ F_k and (n × k)-matrix A over F₂ exist, that there is an equality f = g^A.
- 2 Functions with AD(f) > 0 are algebraically degenerate.
- The set of all degenerate algebraic functions of *n* variables is denoted as $DG(n) = \{f \in \mathcal{F}_n \mid AD(f) > 0\}$.
- Nondegeneracy of a function $f \in \mathcal{F}_n$ is the following value:

$$\operatorname{nd}(f) = \operatorname{dist}(f, \operatorname{DG}(n)).$$

< = ► = • • • •

π : V_n → V_n − a substitution on the space V_n
ψ ∈ F_n − a Boolean function of n variables

 $M = \{f(x, y) \in \mathcal{F}_{2n} : f(x, y) = <\pi(y), x > \oplus\psi(y), x, y \in V_n\}$

ション ふゆ く 山 マ チャット しょうくしゃ

- Maiorana-McFarland class.

\mathcal{PS} class

$$L_{1}, \dots, L_{2^{n-1}} - \text{ subsets of } V_{2n}$$

• $dimL_{i} = n, i = 1, \dots, 2^{n-1}$
• $L_{i} \cap L_{j} = \mathbf{0}, i \neq j, i, j = 1, \dots, 2^{n-1}$
 $\mathcal{PS}^{-} = \{f(x) = I_{L_{1}} \oplus \dots \oplus I_{L_{2^{n-1}}}\}$
 $L_{1}, \dots, L_{2^{n-1}+1} - \text{ subsets of } V_{2n}$
• $dimL_{i} = n, i = 1, \dots, 2^{n-1} + 1$
• $L_{i} \cap L_{j} = \mathbf{0}, i \neq j, i, j = 1, \dots, 2^{n-1} + 1$

$$\mathcal{PS}^+ = \{f(x) = I_{L_1} \oplus \ldots \oplus I_{L_{2^{n-1}+1}}\}$$

$$\mathcal{PS} = \mathcal{PS}^- \cup \mathcal{PS}^+$$

Open problems

- The search of efficient criteria for approving the k-minimality of this function.
- 2 The development of a method of the increasing number of variables k-minimal functions, k > 1, is as effective as for the k = 1.
- The development of efficient searching method of balanced functions with a given values of nonlinearity/nondegeneracy/algebraic immunity in the space generated by k-minimal functions.