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C. Shannon formulated essential confusion and diffusion
requirements for encryption algorithms. By the 60th years of the
twentieth century his recommendations were implemented in the
SP -ciphers.
The linear cryptanalysis and its dual differential cryptanalysis

led to appearance of new block ciphers including XSL-ciphers.
The diffusion property may be measured by a numerical
characteristic called the linear medium’s coefficient of diffusion
(LMCD) of cipher transformation.
Actually the linear medium of a cipher has two coefficients of

diffusion associated with the linear and differential cryptanalysis.
The related terms are the linear medium’s linear coefficient
of diffusion (LMLCD) and the linear medium’s differential
coefficient of diffusion (LMDCD) of cipher transformation. In this
presentation we will consider only the LMLCD (in short, LMCD).



Linear transformations (and their matrices) in ciphers are
characterized by the branch numbers.
Unfortunately the linear and differential branch numbers do

not distinguish substitution matrices used in SP -ciphers. All
permutations have a minimal value of the branch number equal
to 2 but different permutations have different diffusion properties
(according to Shannon) as is demonstrated by the avalanche
effect.
We want to eliminate this disadvantage by using the

multidimensional linear cryptanalysis.



1.1. The functional scheme defining the cipher
transformation

F : VN × VK → VM , F (a, z) = b, (a, z) ∈ VN × VK ,

may be represented by the command sequence of its program
realization.
Here a ∈ VN is a block of plaintext, b ∈ VM is a block of

ciphertext, z ∈ VK is a secret key. In the case of block ciphers
M = N .
Let

fi : Vni → Vmi , fi(xi) = yi, i = 1, . . . , k,

be nonlinear functional elements of the functional scheme
defining the cipher transformation. All other linear operations
of the functional scheme form the linear medium of cipher
transformation.



We may assume that the mappings fi are arranged so that
outputs of fi may be inputs of fj (perhaps indirectly, after linear
operations) only if i < j. As a result,

xj = cj(z, a, y1, . . . , yj−1) = zc∗j + ac0j + y1c1j + . . .+ yj−1cj−1,j ,

b = ck+1(z, a, y1, . . . , yk) = zc∗,k+1 + ac0,k+1 + . . .+ ykck,k+1,

where cj : V
K+N+

∑j−1
i=1 mi

→ Vnj , j = 1, . . . , k, k + 1, are linear
mappings.
Here cij , i = 0, 1, . . . , j − 1, j = 1, . . . , k, k + 1, are a mi × nj

matrices, m0 = N , nk+1 = M . Further, c∗j , j = 1, . . . , k, k + 1,
are a K × nj matrices.



The linear mappings cj are combined into united linear mapping

C : VK+N+
∑k

i=1mi
→ V∑k

i=1 ni+M

and C is represented by (K + N +
∑k

i=1mi) × (
∑k

i=1 ni + M)
matrix.
The uppermost ”row” of matrix C is the matrix C0 =

= (c∗1, ... , c∗k, c∗,k+1). Let C̃ be a submatrix of matrix C
consisting of ”rows” (ci1, ... , cik, ci,k+1), i = 0, 1, ... , k (suppose
cij = 0 for i > j). Then we have equation

(z, a, y1, . . . , yk)C = (x1, . . . , xk, b),

or
(a, y)C̃ + zC0 = (z, a, y)C = (x, b),

where (y1, . . . , yk) = y, (x1, . . . , xk) = x.



1.2. Additive method of constructing s-dimensional
linear relations.
Suppose s > 1. A multidimensional linear relation of cipher

transformation is given by linear mappings L′ : VN → Vs,
L : VK → Vs, L

′′ : VM → Vs and is represented as

η = aL′ + zL+ bL′′,

where b = F (a, z), a is a uniformly distributed random vector,
z ∈ VK is a fixed key.
An efficiency of the relation is characterized by probability

distribution of the vector η on the set Vs. We may use the entropy
H(η) as a measure of uncertainty of the vector η.



The relation η is obtained by summing the local s-dimensional
probability linear relations of mappings fi for all i = 1, . . . , k,
namely

ηi = xil
′
i + yil

′′
i ,

where yi = fi(xi). A probability distribution of ηi is calculated
under the assumption that xi ∈ Vni are uniformly distributed.
The entire set of relations ηi is given by the set

L = ((l′i, l
′′
i ), i = 1, . . . , k) which consists of binary

ni × s and mi × s matrices defining linear mappings
l′i : Vni → Vs, l

′′
i : Vmi → Vs, i = 1, . . . , k.

We will call this set L as the system of the local s-dimensional
probability linear relations of cipher transformation F .



The mappings l′i, l
′′
i , i = 1, ..., k, must satisfy two requirements.

The first requirement is to move the distribution of vectors ηi =
= xil

′
i+yil

′′
i near to degenerate distribution, that is to make these

vectors more specific, therefore, in particular Iml′i ⊆ Iml′′i .

The second requirement is the conformity of the system L =
= ((l′i, l

′′
i ), i = 1, . . . , k), so we can reduce (but without using

equations yi = fi(xi), i = 1, . . . , k) the sum

ηL =

k∑
i=1

ηi =

k∑
i=1

(xil
′
i + yil

′′
i )

to the form
η = aL′ + zL+ bL′′,

where L′ : VN → Vs, L : VK → Vs, L′′ : VM → Vs are some linear
mappings.



The second requirement is equivalent to the solvability of the
equation

C̃

(
l′

L′′

)
=

(
L′

l′′

)
with respect to N × s andM×s matrices L′, L′′. In this equation
the matrices l′, l′′ consist of stacked matrices l′i, l

′′
i , i = 1, ... , k,

respectively.

If the system L is conformal then we suppose L = C0

(
l′

L′′

)
,

and

ηL = xl′ + yl′′ =

k∑
i=1

(xil
′
i + yil

′′
i ) =

k∑
i=1

ηi = aL′ + zL+ bL′′ = η.

The set Ws of all conformal systems L = (l′, l′′) is a vector
space over the field GF (2).



The efficiency of a key recovery depends on a value

σ =
∑
v∈Vs

ε2v ≈ ln 2 · (s−H(η))/2s−1,

where
{
pv = 1

2s + εv, v ∈ Vs
}

is a probability distribution of η.
The less the uncertainty of H(η) (or the greater σ), the less
amount of data is needed for a key recovery attack.
This probability distribution is estimated under the assumption

that random summands ηi, i = 1, . . . , k, are statistically
independent and xi, i = 1, . . . , k, are uniformly distributed.
Therefore we are interested in numbers i ∈ {1, . . . , k} such that

xil
′
i = fi(xi)l

′′
i for all xi ∈ Vni , particularly l′i = 0, l′′i = 0. For such

numbers a random vector ηi does not introduce an uncertainty
into η. Thus conformal systems L having a minimal value of

θL =
∣∣{i ∈ {1, . . . , k} |l′′i 6= 0}

∣∣
are preferred.



2.1. The linear medium’s coefficient of diffusion.
In the case s = 1 the LMCD of cipher transformation with

linear medium C is determined by the formula

θ1(C) = min
L∈W1\{0}

θL.

Let the matrix Λ ∈ GL(n, 2) be used in so-called canonical
XSL-cipher action on Vn, n = m · κ. One round of this cipher
consists of two transformations. The first transformation S is
nonlinear, S = (π, . . . , π︸ ︷︷ ︸

κ

), π ∈ SVm . The second transformation

is a multiplication of vectors from Vn by the matrix Λ from the
right. Round keys of the canonical XSL-cipher are equal to 0.
In the case of the canonical XSL-cipher a set W1 is replaced by

W
(0)
1 = {L = ((l′i, l

′′
i ), i = 1, ... , k)| ∀i ∈ {1, ... , k} : (l′i = 0⇔ l′′i = 0)}.



By Cτ (Λ) we denote the linear medium of the canonical XSL-
cipher with τ rounds. The branch number of matrix Λ is defined
as ρ1,2(Λ) = θ1(C2(Λ)). If the column l ∈ V ∗n is composed of
columns l1, . . . , lκ ∈ V ∗m and

w(l) =
∣∣{j ∈ {1, . . . , κ}∣∣ lj 6= 0}

∣∣
then we can see that

ρ1,2(Λ) = min
l∈V ∗n \{0}

(w(l) + w(Λl)) .

Indices 1 and 2 in the notation ρ1,2(Λ) correspond to s = 1 and
τ = 2.
Matrices Λ ∈ GL(n, 2) having large branch number ρ1,2(Λ) are

preferable from the viewpoint of a cryptographic design.



2.2. Let P ∈ GL(n, 2) be a substitution matrix, then
ρ1,2(P ) = 2. For nonsingular matrices the smallest value of this
characteristic is 2.
Thus the branch number ρ1,2(P ) does not distinguish

substitution matrices. This fact is a main disadvantage of ρ1,2(P ).
A set of characteristics

ρ1,τ (P ) = θ1(Cτ (P )) = τ, τ > 2,

does not change the situation.
But distinguishing of different permutations P ∈ Sn according

to the degree of diffusion (in the sense of Shannon) takes place
in a cryptographic practice. Originally the diffusion properties of
permutations P are defined by the avalanche effect. Theorem 1
below describes optimal in this sense permutations P .



In order to formulate the Theorem 1 we must introduce some
definitions.
The substitution

π : Vn → Vn, x = (x1, . . . , xn) 7→ (y1, . . . , yn) = y,

is called significant if the following conditions hold:
yj depends significantly on xi for all i, j ∈ {1, . . . , n};
xi depends significantly on yj for all i, j.

The SP -ciphers comprising significant substitutions are called
canonical.
Other concept refers to directed graphs. If there exists only one

directed path from i to j for any vertices i, j ∈ {1, . . . , n} and this
path contains r edges then directed graph Γ on n > 1 vertices is
called ∂-graph of order r > 1.
For example, the de Bruijn graph on n = mr vertices is ∂-graph.



Further set {1, . . . , n} is divided into m-subsets

N(j) = {(j − 1)m+ 1, (j − 1)m+ 2, . . . , jm}, j = 1, . . . , κ.

The substitutions π of transformation S act on vectors from Vm;
the components of these vectors have numbers N(j), j = 1, . . . , κ.
The permutation P : Vn → Vn is associated with directed graph

Γ(P ) on a set of vertices {1, . . . , n}.

Theorem 1
If n = mr in the canonical SP -cipher and the graph Γ(P ) is
∂-graph of order r, then the substitution (SP )r : Vn → Vn is
significant.



2.3. The results of the previous sections mean that if we
want to measure diffusion properties of matrices Λ ∈ GL(mκ, 2)
by the LMCD of canonical XSL-ciphers with τ rounds and
linear medium Cτ then we must consider the LMCD θs(Cτ )
corresponding to s-dimensional linear cryptanalysis.
In this paper we propose a 2-parameter set of branch numbers

ρs,τ (Λ), s = 1, . . . ,m, τ = 2, . . . , dlogm ne, as a diffusion
characteristic of matrix Λ ∈ GL(mκ, 2).
We call this characteristic the matrix’s linear characteristic of

diffusion (MLCD). Branch numbers corresponding to small values
of s, τ are more important.
We use branch numbers ρs,τ (Λ1) and ρs,τ (Λ2) to compare

diffusion properties of matrices Λ1, Λ2 ∈ GL(n, 2) only if we
can not do it using ρs′,τ ′(Λ1) and ρs′,τ ′(Λ2), s′ 6 s, τ ′ 6 τ ,
(s′, τ ′) 6= (s, τ).



Consider the conformal system

L = ((l′i, l
′′
i ), i = 1, . . . , τ) =

= ((l′ij , l
′′
ij), i = 1, . . . , τ, j = 1, . . . , κ) ∈Ws,

where l′′i = Λl′i+1, i = 1, . . . , τ − 1.
We put

θs(Cτ ) = min
L∈W(0)

s \{0}
θL,

where W
(0)
s = {L ∈ Ws

∣∣ l′ij = 0 ⇔ (Λl′i+1)j = 0, i = 1, . . . , τ −
1, j = 1, . . . , κ}, θL =

∣∣∣{(i, j) ∈ {1, ... , τ} × {1, ... , κ}| l′ij 6= 0
}∣∣∣.



Theorem 2
Suppose n = mr, Pj ∈ Smr , j = 0, 1, . . . , r − 2,

Pj(i0, i1, . . . , ir−j−1, ir−j , . . . , ir−1) =

= (i1, . . . , ir−j−1, i0, ir−j , . . . , ir−1),

i0, i1, . . . , ir−1 ∈ {0, 1, . . . ,m− 1}. Then

ρm,τ (Pj) = τmτ−1 for j + τ ≤ r

and

ρm,τ (Pj) = τmr−1−j for j + τ > r.



According to Theorem 2 we have

ρm,τ (Pr−1) < ρm,τ (Pr−2) < . . . < ρm,τ (Pr−τ+2) <

< ρm,τ (Pr−τ+1) < ρm,τ (Pr−τ ) = ρm,τ (Pr−τ−1) = . . . =

= ρm,τ (P1) = ρm,τ (P0).

Characteristic ρm,τ does not distinguish permutations
P0, P1, . . . , Pr−τ for τ < r and this fact is a defect of ρm,τ .
But values ρm,τ (Pj), j = 0, 1, . . . , r − 2, r − 1 are completely
different for τ = r, and the smaller j, the greater the value of
this characteristic.



Thank you for attention!!


