Estimates of extremal codeword weights of random linear codes over  $\mathbf{F}_p$ 

#### A. M. Zubkov, V. I. Kruglov

Steklov Mathematical Institute of Russian Academy of Sciences

Saint-Petersburg, 2017

• Let 
$$p$$
 be any fixed prime number and  
 $\mathbf{F}_p^N = \{X = (x_1, \dots, x_N) \colon x_1, \dots, x_N \in \mathbf{F}_p\}.$ 

Any k-dimensional subspace L ⊂ F<sup>N</sup><sub>p</sub> we understood as k-dimensional linear code.

For any 
$$X = (x_1, \ldots, x_N) \in \mathbf{F}_p^N$$
 we define its weight as  $w(X) = \sum_{k=1}^N I\{x_k \neq 0\}.$ 

▶ For a linear code L let

$$v_s(L) = |\{X \in L : w(X) = s\}|,$$

the set  $\{v_s(L), s = 0, \dots, N\}$  is the weight spectrum of L.

Let 
$$v_{\leqslant s}(L) = \sum_{u=1}^{s} v_s(L)$$
 and  
 $\mu_*(L) = \min\{w(X) \colon X \in L \setminus \{0\}\}.$ 

#### Theorem 1

If  $L \subset \mathbf{F}_p^N$  is a random linear k-dimensional code in  $\mathbf{F}_p^N$ , then

$$\mathbf{E}v_{\leqslant s}(L) = \frac{p^k - 1}{p^N - 1} \sum_{u=1}^s C_N^u (p-1)^u,$$

$$\frac{1}{1 + \frac{p^N - p^k}{p^N - 1}(p-1)(\mathbf{E}v_{\leqslant s}(L))^{-1}} \leqslant \\
\leqslant \mathbf{P}\{\mu^*(L) \leqslant s\} \leqslant \min\left\{\mathbf{E}v_{\leqslant s}(L), 1\right\}.$$

It follows from Theorem 1 that

$$\mathbf{E}v_{\leqslant s+1}(L) \ge \frac{N-s}{s+1}(p-1)\mathbf{E}v_{\leqslant s}(L).$$

Let 
$$v_{\geqslant s}(L) = \sum_{u=s}^{N} v_s(L)$$
 and  
 $\mu^*(L) = \max\{w(X) \colon X \in L\}.$ 

#### Theorem 2

If  $L \subset \mathbf{F}_p^N$  is a random linear k-dimensional code in  $\mathbf{F}_p^N$ , then

$$\mathbf{E}v_{\geq s}(L) = \frac{p^k - 1}{p^N - 1} \sum_{u=s}^N C_N^u (p-1)^u$$

and  $\frac{1}{1 + \frac{p^N - p^k}{p^N - 1}(p - 1)(\mathbf{E}v_{\geqslant s}(L))^{-1}} \leqslant \\
\leqslant \mathbf{P}\{\mu^*(L) \leqslant s\} \leqslant \min \{\mathbf{E}v_{\geqslant s}(L), 1\}.$ 

Theorem 3 (Zubkov, Serov 2012) Let  $H(x,r) = x \ln \frac{x}{r} + (1-x) \ln \frac{1-x}{1-r}$ ,  $\operatorname{sgn}(x) = \frac{x}{|x|}$ for  $x \neq 0$  and sgn(0) = 0, let  $\{C_{N,r}(m)\}_{m=0}^{N}$  be increasing sequences defined as follows:  $C_{N,r}(0) = (1-r)^N, \ C_{N,r}(N) = 1-r^N,$  $C_{N,r}(m) = \Phi\left(\operatorname{sgn}\left(\frac{m}{N} - r\right)\sqrt{2NH\left(\frac{m}{N}, r\right)}\right), 1 \leq m < N.$ Then for  $m = 0, 1, \ldots, N-1$  and for  $r \in (0, 1)$  $C_{N,r}(m) \leq \sum_{u=0}^{m} C_N^u r^u (1-r)^{N-u} \leq C_{n,r}(m+1)$ and equalities take place only for  $C_{Nr}(0)$  and  $C_{N,r}(N)$ .

It follows from the Theorem 3 that typical values of minimal non-zero codeword weight  $\mu_*(L)$  of random uniformly distributed k-dimensional linear code L in  $\mathbf{F}_p^N$  are concentrated near the minimal root  $s < \frac{N(p-1)}{p}$  of the equation  $H\left(\frac{s}{N}, \frac{p-1}{p}\right) \approx \frac{1}{N} \left(k \ln p - \ln(4\pi k \ln p)\right).$ 

In particular, if dimension k of the random code Land dimension N of the space  $\mathbf{F}_p^N$  are growing proportionally, then the typical value s of the minimal non-zero codeword weight also is growing proportionally to N. Analogously, typical values of maximal codeword weight  $\mu^*(L)$  of random uniformly distributed k-dimensional linear code L in  $\mathbf{F}_p^N$  are concentrated near the maximal root  $s > \frac{N(p-1)}{p}$  of the same equation

$$H\left(\frac{s}{N}, \frac{p-1}{p}\right) \approx \frac{1}{N} \left(k \ln p - \ln(4\pi k \ln p)\right).$$

Remind that  $H(x,r) = x \ln \frac{x}{r} + (1-x) \ln \frac{1-x}{1-r}$ , so

$$H(x,r) = H(1-x, 1-r).$$

# Bounds for $\mathbf{P}\{\mu_*(L) \leq s\}$ for $L \subset \mathbf{F}_2^N$ , N = 128, and some $k = \dim L$ .



From left to right: k = 3N/4 = 96, k = N/2 = 64, k = N/4 = 32.

Solutions of the equation  $H\left(\frac{s}{N}, \frac{p-1}{p}\right) \approx \frac{1}{N} (k \ln p - \ln(4\pi k \ln p))$ are correspondingly 7.628, 17.293, 32.176

## Bounds for $\mathbf{P}\{\mu_*(L) \leq s\}$ for $L \subset \mathbf{F}_2^N, N = 1024$ , and some $k = \dim L$ .



From left to right:  $k = \frac{3N}{4} = 768$ ,  $k = \frac{N}{2} = 512$ ,  $k = \frac{N}{4} = 256$ . Solutions of the equation  $H\left(\frac{s}{N}, \frac{p-1}{p}\right) \approx \frac{1}{N} \left(k \ln p - \ln(4\pi k \ln p)\right)$ are correspondingly 45.533 116.727, 225.669

# Bounds for $\mathbf{P}\{\mu^*(L) \ge s\}$ for $L \subset \mathbf{F}_2^N$ , N = 128, and some $k = \dim L$ .



From left to right: k = 3N/4 = 96, k = N/2 = 64, k = N/4 = 32.

Solutions of the equation  $H\left(\frac{s}{N}, \frac{p-1}{p}\right) \approx \frac{1}{N} (k \ln p - \ln(4\pi k \ln p))$  are correspondingly 120.371, 110.706, 95.82

## Bounds for $\mathbf{P}\{\mu^*(L) \ge s\}$ for $L \subset \mathbf{F}_2^N, N = 1024$ , and some $k = \dim L$ .



From left to right:  $k = 3N/4 = 768, \ k = N/2 = 512, \ k = N/4 = 256.$ 

Solutions of the equation  $H\left(\frac{s}{N}, \frac{p-1}{p}\right) \approx \frac{1}{N} (k \ln p - \ln(4\pi k \ln p))$  are correspondingly 978.466, 907.272, 798.330

One may note that graphics for  $\mathbf{P}\{\mu_*(L) \leq s\}$  and  $\mathbf{P}\{\mu^*(L) \geq s\}$  are visually similar, for example:



N = 128, k = 64.

Comparing inequalities of theorem 1 and theorem 2 we can note that

$$\mathbf{E}v_{\geqslant s}(L) = rac{2^k - 1}{2^N - 1} \sum_{r=s}^N C_N^r =$$

$$=\frac{2^{k}-1}{2^{N}-1}\sum_{r=0}^{N-s}C_{N}^{r}=\mathbf{E}v_{\leqslant N-s}(L)+\frac{2^{k}-1}{2^{N}-1},$$

and thus the differences between bounds for probabilities  $\mathbf{P}\{\mu_*(L) \leq s\}$  and  $\mathbf{P}\{\mu^*(L) \geq N-s\}$  are very small.

Algorithms for searching codeword of minimal weight in random code:

- 1989: Stern J. A method for finding codewords of small weight.
- 1998: Canteaut A., Chabaud F. A new algorithm for finding minimum-weight words in a linear code: application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511.
- ▶ 2011: May A., Meurer A., Thomae E. Decoding random linear codes in  $O(2^{0.054n})$ .
- 2012: Becker A., Joux A., May A., Meurer A.
   Decoding random binary linear codes in 2<sup>n/20</sup>: how 1 + 1 = 0 improves information set decoding.

Overbeck, Sendrier: "most binary linear codes of length N and codimension N - k have a minimum distance very close to the Gilbert-Varshamov distance  $d_0$ ", where  $d_0$  is defined as the largest integer such that

$$\sum_{i=0}^{d_0-1} C_N^i \le 2^{N-k}.$$

If p = 2, then it follows from Theorem 1 that

$$\mathbf{E}v_{\leqslant s}(L) = \frac{2^k - 1}{2^N - 1} \sum_{u=1}^s C_N^u,$$
$$\frac{1}{1 + \frac{2^N - 2^k}{2^N - 1}} \leqslant \mathbf{P}\{\mu_*(L) \leqslant s\} \leqslant \mathbf{E}v_{\leqslant s}(L).$$

So, typical values of  $\mu_*(L)$  correspond to values of s such that  $\mathbf{E}v_{\leqslant s}(L) \approx \frac{1}{2^{N-k}} \sum_{u=1}^s C_N^u \approx 1$  is separated from 0 and  $\infty$ .

This corresponds the Gilbert-Varshamov distance  $d_0$  which is the largest integer such that

 $\sum_{i=0}^{d_0-1} C_N^i \leq 2^{N-k}$ , but our inequalities also give estimates for fractions of codes with atypical minimal codeword weight.

According to the equation

$$H\left(\frac{s}{N}, \frac{p-1}{p}\right) \approx \frac{1}{N} \left(k \ln p - \ln(4\pi k \ln p)\right),$$

for random linear codes L in  ${\bf F}_2^N$  of dimension k=N/2 the typical values of minimal non-zero codeword weight  $\mu_*(L)$  are concentrated near the value

 $0.1100 \dots \cdot N$ 

and typical values of maximal codeword weight  $\mu^*(L)$  are concentrated near the value

 $0.8899\ldots \cdot N.$ 

| N    | k    | $d_0$ | min root |
|------|------|-------|----------|
| 64   | 32   | 7     | 10.043   |
| 128  | 64   | 15    | 17.293   |
| 256  | 128  | 29    | 31.634   |
| 512  | 256  | 57    | 60.088   |
| 768  | 384  | 85    | 88.431   |
| 1024 | 512  | 113   | 116.727  |
| 1536 | 768  | 170   | 173.244  |
| 2048 | 1024 | 226   | 229.710  |

## Thank you!

Finding codeword Vs. Decoding.

One can decode a linear code by finding a low-weight codeword in a slightly larger code.

If L is a code over  $\mathbf{F}_2$ , and  $y \in \mathbf{F}_2^N$  has distance w from a codeword  $x \in L$ , then y - x is a weight-w element of the code  $L + \{0, y\}$ .

Conversely, if L is a code over  $\mathbf{F}_2$  with minimum distance larger than w, then a weight-w element  $e \in L + \{0, y\}$  cannot be in L, so it must be in  $e \in L + \{y\}$  and thus y - e is an element of L with distance w from y.

If dim 
$$L = k$$
 and  $y \notin L$  then  
dim  $L + \{0, y\} = k + 1$ .

McEliece cryptosystem.

- Keysetting: select  $n \times n$  permutation binary matrix P, nonsingular  $k \times k$  binary matrix S, select an irreducible polynomial  $g \in \mathbf{F}_{2^d}[x]$  of degree tand fix generator matrix G of corresponding Goppa code of dimension k = n - td.
- Public key is SGP, private key is (S, G, P), values
   n, k, t are also public parameters.

McEliece cryptosystem.

- Encryption: for message  $m \in \mathbf{F}_2^k$  select random error vector  $e \in \mathbf{F}_2^N$  of weight w(e) = t and compute cyphertext  $c = mSGP \oplus e \in \mathbf{F}_2^N$ .
- Decryption: for cyphertext  $c = mSGP \oplus e$ compute  $mP^{-1} = mSG + eP^{-1}$ . Note that mSGis a codeword in  $\Gamma$  and  $w(eP^{-1}) = t$ , so we can recover mSG and therefore m.
- Eavesdropper faces NP-hard problem of correcting error *e* for seemingly random linear code with generator matrix *SGP*.

### Goppa codes.

Fix a finite field  $\mathbf{F}_{2^d}$ , a basis of  $\mathbf{F}_{2^d}$  over  $\mathbf{F}_2$ , and a set of n distinct elements  $\alpha_1, \ldots, \alpha_n \in \mathbf{F}_{2^d}$ . Fix an irreducible polynomial  $g \in \mathbf{F}_{2^d}[x]$  of degree t, where  $2 \leq t \leq (n-1)/d$ .

The Goppa code  $\Gamma = \Gamma(\alpha_1, \ldots, \alpha_n, g)$  consists of all elements  $\mathbf{c} = (c_1, \ldots, c_n)$  in  $\mathbf{F}_2^n$  satisfying

$$\sum_{i=1}^{n} \frac{c_i}{x - \alpha_i} = 0 \quad \text{in} \quad \mathbf{F}_{2^d}[x]/g.$$

The dimension of  $\Gamma$  is at least n - td and typically is exactly n - td. The minimum distance of  $\Gamma$  is at least 2t + 1.

Следовало сравнить кодовое расстояние кода Гоппы с нашими оценками.