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I Let p be any fixed prime number and
FN

p = {X = (x1, . . . , xN) : x1, . . . , xN ∈ Fp}.

I Any k-dimensional subspace L ⊂ FN
p we

understood as k-dimensional linear code.

I For any X = (x1, . . . , xN) ∈ FN
p we define its

weight as w(X) =
∑N

k=1 I{xk ̸= 0}.

I For a linear code L let

vs(L) = |{X ∈ L : w(X) = s}| ,

the set {vs(L), s = 0, . . . , N} is the weight
spectrum of L.
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Let v6s(L) =
s∑

u=1
vs(L) and

µ∗(L) = min{w(X) : X ∈ L\{0}}.

Theorem 1
If L ⊂ FN

p is a random linear k-dimensional code in
FN

p , then

Ev6s(L) =
pk − 1

pN − 1

s∑
u=1

Cu
N(p− 1)u,

1

1+ pN−pk

pN−1 (p−1)(Ev6s(L))−1
6

6 P{µ∗(L) 6 s}6 min {Ev6s(L), 1} .
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It follows from Theorem 1 that

Ev6s+1(L) >
N − s

s+ 1
(p− 1)Ev6s(L).
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Let v>s(L) =
∑N

u=s vs(L) and

µ∗(L) = max{w(X) : X ∈ L}.

Theorem 2
If L ⊂ FN

p is a random linear k-dimensional code in
FN

p , then

Ev>s(L) =
pk − 1

pN − 1

∑N

u=s
Cu

N(p− 1)u

and
1

1+ pN−pk

pN−1 (p−1)(Ev>s(L))−1
6

6 P{µ∗(L) 6 s}6 min {Ev>s(L), 1} .
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Theorem 3 (Zubkov, Serov 2012)
Let H(x, r) = x ln x

r + (1− x) ln 1−x
1−r , sgn(x) = x

|x|
for x ̸= 0 and sgn(0) = 0, let {CN,r(m)}Nm=0 be
increasing sequences defined as follows:
CN,r(0) = (1− r)N , CN,r(N) = 1− rN ,

CN,r(m)=Φ

(
sgn

(
m
N−r

)√
2NH

(
m
N , r

))
, 16m<N.

Then for m = 0, 1, . . . , N − 1 and for r ∈ (0, 1)

CN,r(m) 6
∑m

u=0
Cu

Nr
u(1− r)N−u 6 Cn,r(m+ 1)

and equalities take place only for CN,r(0) and
CN,r(N).
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It follows from the Theorem 3 that typical values of
minimal non-zero codeword weight µ∗(L) of random
uniformly distributed k-dimensional linear code L in
FN

p are concentrated near the minimal root
s < N(p−1)

p of the equation

H
(

s
N , p−1

p

)
≈ 1

N (k ln p− ln(4πk ln p)) .

In particular, if dimension k of the random code L
and dimension N of the space FN

p are growing
proportionally, then the typical value s of the minimal
non-zero codeword weight also is growing
proportionally to N .
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Analogously, typical values of maximal codeword
weight µ∗(L) of random uniformly distributed
k-dimensional linear code L in FN

p are concentrated
near the maximal root s > N(p−1)

p of the same
equation

H
(

s
N , p−1

p

)
≈ 1

N (k ln p− ln(4πk ln p)) .

Remind that H(x, r) = x ln x
r + (1− x) ln 1−x

1−r , so

H(x, r) = H(1− x, 1− r).
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Bounds for P{µ∗(L) 6 s} for L ⊂ FN
2 , N = 128,

and some k = dimL.
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From left to right: k = 3N/4 = 96, k = N/2 = 64, k = N/4 = 32.

Solutions of the equation H
(

s
N , p−1

p

)
≈ 1

N (k ln p− ln(4πk ln p))

are correspondingly 7.628, 17.293, 32.176

A.M. Zubkov, V. I. Kruglov Estimates of extremal codeword weights...



Bounds for P{µ∗(L) 6 s} for L ⊂ FN
2 , N = 1024,

and some k = dimL.
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2 = 512, k = N
4 = 256.

Solutions of the equation H
(

s
N , p−1

p

)
≈ 1

N (k ln p− ln(4πk ln p))

are correspondingly 45.533 116.727, 225.669

A.M. Zubkov, V. I. Kruglov Estimates of extremal codeword weights...



Bounds for P{µ∗(L) > s} for L ⊂ FN
2 , N = 128,

and some k = dimL.
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From left to right: k = 3N/4 = 96, k = N/2 = 64, k = N/4 = 32.

Solutions of the equation H
(

s
N , p−1

p

)
≈ 1

N (k ln p− ln(4πk ln p)) are

correspondingly 120.371, 110.706, 95.82
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Bounds for P{µ∗(L) > s} for L ⊂ FN
2 , N = 1024,

and some k = dimL.
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Solutions of the equation H
(

s
N , p−1

p

)
≈ 1

N (k ln p− ln(4πk ln p)) are

correspondingly 978.466, 907.272, 798.330
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One may note that graphics for P{µ∗(L) 6 s} and
P{µ∗(L) > s} are visually similar, for example:
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N = 128, k = 64.
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Comparing inequalities of theorem 1 and theorem 2
we can note that

Ev>s(L) =
2k − 1

2N − 1

N∑
r=s

Cr
N =

=
2k − 1

2N − 1

N−s∑
r=0

Cr
N = Ev6N−s(L) +

2k − 1

2N − 1
,

and thus the differences between bounds for
probabilities P{µ∗(L) 6 s} and P{µ∗(L) > N − s}
are very small.
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Algorithms for searching codeword of minimal weight
in random code:

I 1989: Stern J. A method for finding codewords of
small weight.

I 1998: Canteaut A., Chabaud F. A new algorithm
for finding minimum-weight words in a linear code:
application to McEliece’s cryptosystem and to
narrow-sense BCH codes of length 511.

I 2011: May A., Meurer A., Thomae E. Decoding
random linear codes in O(20.054n).

I 2012: Becker A., Joux A., May A., Meurer A.
Decoding random binary linear codes in 2n/20 :
how 1 + 1 = 0 improves information set decoding.
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Overbeck, Sendrier: "most binary linear codes of
length N and codimension N − k have a minimum
distance very close to the Gilbert-Varshamov distance
d0", where d0 is defined as the largest integer such
that

d0−1∑
i=0

C i
N ≤ 2N−k.
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If p = 2, then it follows from Theorem 1 that

Ev6s(L) =
2k − 1

2N − 1

∑s

u=1
Cu

N ,

1

1+ 2N−2k

2N−1 (Ev6s(L))−1
6P{µ∗(L)6s}6Ev6s(L).

So, typical values of µ∗(L) correspond to values of s
such that Ev6s(L) ≈ 1

2N−k

∑s
u=1C

u
N ≈ 1 is

separated from 0 and ∞.
This corresponds the Gilbert-Varshamov distance d0
which is the largest integer such that∑d0−1

i=0 C i
N ≤ 2N−k, but our inequalities also give

estimates for fractions of codes with atypical minimal
codeword weight.
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According to the equation

H
(

s
N , p−1

p

)
≈ 1

N (k ln p− ln(4πk ln p)) ,

for random linear codes L in FN
2 of dimension

k = N/2 the typical values of minimal non-zero
codeword weight µ∗(L) are concentrated near the
value

0.1100 . . . ·N
and typical values of maximal codeword weight µ∗(L)
are concentrated near the value

0.8899 . . . ·N.
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N k d0 min root
64 32 7 10.043
128 64 15 17.293
256 128 29 31.634
512 256 57 60.088
768 384 85 88.431
1024 512 113 116.727
1536 768 170 173.244
2048 1024 226 229.710
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Thank you!
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Finding codeword Vs. Decoding.

One can decode a linear code by finding a low-weight
codeword in a slightly larger code.
If L is a code over F2, and y ∈ FN

2 has distance w
from a codeword x ∈ L, then y − x is a weight-w
element of the code L+ {0, y}.
Conversely, if L is a code over F2 with minimum
distance larger than w, then a weight-w element
e ∈ L+ {0, y} cannot be in L, so it must be in
e ∈ L+ {y} and thus y − e is an element of L with
distance w from y.
If dimL = k and y /∈ L then
dimL+ {0, y} = k + 1.
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McEliece cryptosystem.

I Keysetting: select n× n permutation binary
matrix P, nonsingular k×k binary matrix S, select
an irreducible polynomial g ∈ F2d[x] of degree t
and fix generator matrix G of corresponding
Goppa code of dimension k = n− td.

I Public key is SGP, private key is (S,G, P ), values
n, k, t are also public parameters.
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McEliece cryptosystem.

I Encryption: for message m ∈ Fk
2 select random

error vector e ∈ FN
2 of weight w(e) = t and

compute cyphertext c = mSGP ⊕ e ∈ FN
2 .

I Decryption: for cyphertext c = mSGP ⊕ e
compute mP−1 = mSG+ eP−1. Note that mSG
is a codeword in Γ and w(eP−1) = t, so we can
recover mSG and therefore m.

I Eavesdropper faces NP-hard problem of correcting
error e for seemingly random linear code with
generator matrix SGP.

A.M. Zubkov, V. I. Kruglov Estimates of extremal codeword weights...



Goppa codes.

Fix a finite field F2d, a basis of F2d over F2, and a
set of n distinct elements α1, . . . , αn ∈ F2d. Fix an
irreducible polynomial g ∈ F2d[x] of degree t, where
2 ≤ t ≤ (n− 1)/d.
The Goppa code Γ = Γ(α1, . . . , αn, g) consists of all
elements c = (c1, . . . , cn) in Fn

2 satisfying∑n

i=1

ci
x− αi

= 0 in F2d[x]/g.

The dimension of Γ is at least n− td and typically is
exactly n− td. The minimum distance of Γ is at
least 2t+ 1.
Следовало сравнить кодовое расстояние кода
Гоппы с нашими оценками.
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