Approximate common divisor problem and lattice sieving

Kirill Zhukov

TVP Laboratories

6th Workshop on Current Trends in Cryptology CTCrypt 2017

Kirill Zhukov (TVP Laboratories)

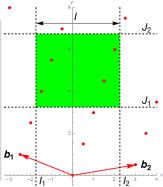
Approximate common divisor problem

CTCrypt 2017 1 / 6

Part I: Lattice Sieving

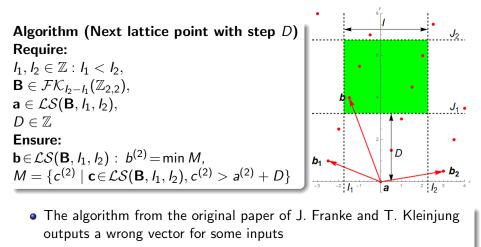
For $\mathbf{B} = \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{pmatrix} \in \mathbb{Z}_{2,2}$ and $I_1, I_2, J_1, J_2 \in \mathbb{Z}$ we define:

$$\mathcal{L}(\mathbf{B}) = \{\mathbf{b}_1 x + \mathbf{b}_2 y \mid x, y \in \mathbb{Z}\},\$$
$$\mathcal{R}(l_1, l_2, J_1, J_2) = \{\mathbf{v} \in \mathbb{R}^2 : \binom{l_1}{J_1} < \mathbf{v} < \binom{l_2}{J_2}\},\$$
$$\mathcal{S}(l_1, l_2) = \{\mathbf{v} \in \mathbb{R}^2 \mid l_1 < \mathbf{v}^{(1)} < l_2\},\$$
$$\mathcal{LS}(\mathbf{B}, l_1, l_2) = \mathcal{L}(\mathbf{B}) \cap \mathcal{S}(l_1, l_2).$$



We say $\mathbf{B} = {\binom{\mathbf{b}_1}{\mathbf{b}_2}} \in \mathbb{Z}_{2,2}$ is FK-reduced with parameter $I \in \mathbb{Z}_{>0}$ if: 1) $-I < \mathbf{b_1}^{(1)} \le 0$ and $0 \le \mathbf{b_2}^{(1)} < I$, 2) $\mathbf{b_1}^{(2)} > 0$ and $\mathbf{b_2}^{(2)} > 0$, 3) $\mathbf{b_2}^{(1)} - \mathbf{b_1}^{(1)} > I$.

Part I: Lattice Sieving



• We prove the correctness of our version of algorithm in full paper

CIURYP

- 4 @ ト 4 ヨト 4 ヨト

PACDP

Part II: Partially approximate common divisor problem

PACDP (N. Howgrave-Graham):

Let $\Delta < A < N$ be fixed naturals. For every input $N_1, N_2 \in \mathbb{N}$ with $N_1 < N$ find all $a \in \mathbb{N}$ (a < A) and $\delta \in \mathbb{Z}$ $(|\delta| < \Delta)$ such that

$$N_1 = ab_1$$
 and $N_2 = ab_2 + \delta$

for some $b_1, b_2 \in \mathbb{N}$.

- PACDP is hard if Δ and A are close
- PACDP is hard if $A < \sqrt{N}$

PACDP relates on Implicit Factoring (A. May, M. Ritzenhofen): Given RSA moduli $N_1 = p_1q_1$, $N_2 = p_2q_2$. The goal is to factor N_1 and N_2 provided $|p_1 - p_2|$ is small.

< A > < 3

PACDP

Part II: PACDP - Short vector approach

Every solution of PACDP satisfies inequalities:

$$-rac{N_1\Delta}{A} < -N_2b_1 + N_1b_2 < rac{N_1\Delta}{A} \ 0 < b_1 < rac{N_1}{A}$$

Denote
$$\mathbf{B} = \begin{pmatrix} -N_2 & \Delta \\ N_1 & 0 \end{pmatrix}$$
, $\mathbf{b} = (b_1, b_2)\mathbf{B}$. Then $\det(\mathbf{B}) = N_1\Delta$, $\|\mathbf{b}\| < \frac{\sqrt{2}N_1\Delta}{A}$.

If $A > \sqrt{N\Delta}$, then $\|\mathbf{b}\| < \sqrt{2} \det(\mathbf{B})^{1/2}$, i.e. **b** is a short vector of $\mathcal{L}(\mathbf{B})$ We solve SVP for $\mathcal{L}(\mathbf{B})$ using $O(n \lg^2 n \lg \lg n)$ bit operations.

What if $A > \sqrt{N\Delta/c}$ for some $c \in \mathbb{N}$?

We solve c pieces of SVPs using $O(cn \lg^2 n \lg \lg n)$ bit operations.

Kirill Zhukov (TVP Laboratories)

PACDP

Part II: PACDP - Integer inequalities approach

Every solution of PACDP satisfies inequalities:

$$-rac{N_1\Delta}{A} < -N_2b_1 + N_1b_2 < rac{N_1\Delta}{A} \ 0 < b_1 < rac{N_1}{A}$$

Denote
$$\mathbf{B} = \begin{pmatrix} -N_2 & 1 \\ N_1 & 0 \end{pmatrix}$$
, $\mathcal{R} = \mathcal{R}(-\frac{N_1\Delta}{A}, \frac{N_1\Delta}{A}, 0, \frac{N_1}{A})$.
Then $\det(\mathbf{B}) = N_1$, $\operatorname{Vol}(\mathcal{R}) = \frac{2N_1^2\Delta}{A^2}$.

If $A > \sqrt{N\Delta/c}$, then under Gauss Volume Heuristics the number of solutions is $\frac{Vol(\mathcal{R})}{\det(B)} < 2c$

We solve the system with Franke-Kleinjung algorithm and check every solution for being a solution of PACDP using $O(cn \lg n \lg \lg n)$ bit operations.