An Approach to Studying Periods of Binary Digit-position Sequences over Prime Rings

Kuzmin S.A.

TVP Laboratories CTCrypt'17 VI Workshop on Current Trends in Cryptology

Kuzmin S.A.

Binary Digit-position Sequences

june 2017 1 / 6

Closest aspects

- level sequences and k-linear recurring sequences (Bylkov D.V., Kamlovskiy O.V., Kurakin V.L., Kuzmin A.S., Kozlitin O.A., Nechaev A.A.)
- modular reductions of linear recurring sequences over \mathbb{Z}_{p^n} and \mathbb{Z}_{pq} where p and qare different prime numbers (Xuan-Yong Zhu, Wen-Feng Qi)
- digit-position sequences over fields and rings (Kuzmin A.S., Kuzmin S.A.)

Introduction

Let \mathbb{Z}_{p^n} , be a primary ring with the generator polynomial F(x), deg F(x) = m, notably $u(i) = (u(i))_{i=0}^{\infty}$ is LRS MP over this ring. Period T(u) of LRS MP u equals $p^{n-1}(p^m - 1)$. Every element u(i) of some LRS MP u over prime ring can be uniquely represented as follows

$$u(i)=\sum_{t=0}^k u_t(i)2^t,$$

where $k = [\log_2 p^n]$. Sequence $u_t, t = \overline{1, k}$ is called t^{th} binary digit-position sequence. The following property holds $T(u_t)|T(u)$.

Approach

Multiplier of sequence u is an element $c \in \mathbb{Z}_{p^n}^*$, for which exists $q \in \mathbb{N}$ with property $x^q u = cu$. Let $c \in \mathbb{Z}_{p^n}$ be a multiplier of sequence u over \mathbb{Z}_{p^n} . Let M(u) be a set of all of multipliers of u. M(u) forms subgroup in $\mathbb{Z}_{p^n}^*$. Let $H = \{1, \beta, \beta^2, \dots, \beta^{2d-1}\}$ be a subgroup of M(u), here β is a forming element of group H, value 2d satisfies condition

$$2d|GCD(T(u), |\mathbb{Z}_{p^n}^*|) = p^{n-1}(p-1).$$

The set of $\mathbb{Z}_{p^n} \setminus \{0\}$ can be represented as a decomposition of non-intersecting classes $g_j H$ for some $g_j \in \mathbb{Z}_{p^n} \setminus \{0\}$

Result

Theorem

Let u be an LRS MP over \mathbb{Z}_{p^n} with generator polynomial F(x), degF(x) = m, all the elements of \mathbb{Z}_{p^n} occure in the cycle of u, u_s be the s^{th} digit-position sequence of u, where s satisfies conditions $p^n = a(s)2^{s+1} + 2^s - 1$, for some $a(s) \ge 0$, $s \ge 1$. Let H < M(u), |H| = 2d, $p \ge 3$. Then the following expression holds

$$T(u_s) \ / \frac{T(u)}{2d}.$$

Kuzmin S.A.

A (1) > A (1) > A

Thank you for attention.

Kuzmin S.A.

Binary Digit-position Sequences

june 2017

3

イロト イヨト イヨト イヨ

6 / 6